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Preface 

Relationship between the Air Force (AF) and the National Institute of Justice (NIJ): 

The National Law Enforcement and Corrections Technology Center -Northeast Region 
(NLECTC-NE) was established at the Air Force Research Laboratory - Information 
Directorate (AFRLAF) (formerly Rome Laboratory) in Rome, NY in 1996. The mission 
of the NLECTC-NE is to work with government, industry, and academia to identify, 
evaluate, demonstrate, develop and assess technology applications for law enforcement 
and corrections. 

AFRL/IF sponsors research and development in information and hsion, communications, 
collaborative environment and modeling and simulation, defensive information warfare 
and intelligent information systems technologies. This partnership allows the NLECTC-
NE to draw upon the engineers of AFRL, to help assess the adaptation and development 
of products and technologies designed for the military with transfer to law enforcement, 
corrections, and other criminal justice applications. 

Voice stress analysis technology vendors claim the ability to detect stress, possibly 
indicating deception, in voice communications. The systems are advertised as being 
cheaper, easier to use, less invasive in use, and less constrained in their operation than 
polygraph technology. N I J  is funding the evaluation of the scientific value and utility of 
existing, commercial voice stress analysis technology for law enforcement requirements 
through NLECTC-NE. By utilizing the unique partnership with AFRL-IF, a thorough 
literature search provided insight into the history of the development of voice stress 
analysis, and information on previous evaluation efforts. AFFU-IF was then able to 
collect a variety of law enforcement audiohideo data that would be utilized to test the 
performance of Air Force algorithms developed within the AFRL Information directorate. 

This report will touch on two of these systems that have been evaluated and tested. 
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1.01 EXECUTIVE SUMMARY 

Voice Stress Analysis (VSA) systems are marketed as computer-based systems capable of 
measuring stress in a person's voice as an indicator of deception. They are advertised as 
being less expensive, easier to use, less invasive in use, and less constrained in their 
operation than polygraph technology. Law enforcement officials have inquired about this 
technology. As a result, the National Institute of Justice (NIJ) has petitioned the Air Force 
Research Laboratory (AFRL/IFE) for assistance in evaluating voice stress analysis 
technology. This evaluation is broken down in three phases. In the first phase, Dr. John 
H.L. Hansen, from the University of Colorado, investigated the feasibility of detecting stress 
from speech. He reported on the methods, analysis, and classification of voice stress 
contained in the appendix of this report. The second and third phase of this study 
investigated the reliability of commercial VSA units, from a theoretical point of view and 
from an application (i.e. law enforcement) point of view. 

1.02 EFFORT OBJECTIVE 

The Objective ofthis effort is to determine the effectiveness of commercially available voice 
stress analyzers (VSA) to detect "stress" in the voice of a talker. The use of 'lstressed 
speech" for this effort is defined as speech that exhibits a change in characteristics caused 
by mental stress such as anxiety and/or fear. Of particular interest is the detection of stressed 
speech (change) caused by an act of deception under law enforcement interview questioning 
or military interrogation. 

1.03 

1.04 INTRODUCTION 

Police departments everywhere are bombarded with offers of advanced technologies by 
commercial enterprises that promise to reduce their officers' workload, improve law 
enforcement effectiveness, and/or save lives. With increasingly limited budgets, police 
departments must turn a critical eye to every purchase. 

One interest by law enforcement and military organizations are the commercial VSA 
systems, which are advertised to detect deception or to detect when a person under 
interrogation is lying. Ifvoice stress can be detected, and effectively analyzed, perhaps it can 
be used as a viable investigative tool as well as an adjunct to speech recognition technology 
in order to improve speech recognition capabilities. 

Numerous police officers and agencies have been approached in recent years by vendors 
touting computer-based systems capable of measuring stress in a person's voice as an 
indicator of deception. These systems are advertised as being cheaper, easier to use, less 
invasive in use, and less constrained in their operation than polygraph technology. Table 1 
is a replication of the table of comparisons made by one vendor contrasting their VSA 
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system with a computerized polygraph. Besides costing less to purchase the equipment and 
train users, the table indicates that a VSA examiner can conduct seven (7) exams per day 
while apolygraph examiner can conduct only two (2) per day. This vendor claims to always 
have conclusive results, and the ability to analyze recorded audio as well as live speakers. 
They claim that a speaker's medical condition, age, or consumption of drugs does not affect 
use of their system. Voice stress analysis does not require physical attachment of the system 
to the speaker's body and does not require that answers be restricted to "yes" and "no". 
Purportedly, according to some vendors, any spoken word or even a groan, whether recorded, 
videotaped, or spoken in person, with or without the speaker's knowledge, are acceptable 
inputs to voice stress analysis systems. 

The value of voice stress analysis technology for military application could be extensive. 
During military field interrogations of potential informants, it could be applied in a manner 
similar to its application for law enforcement. Also, it is not known if stressed speech has 
any effectsonthe accuracy of speech technology, such as speaker identification and language 
identification. If voice stress can be detected, perhaps it can be taken into account in 
applying voice recognition technology and be used to improve these recognition capabilities. 
Therefore, this effort is to determine the scientific value and utility of existing, commercial 
voice stress analysis technology for law enforcement and military applications. 

Table 1 :  Cost comparisons made by a VSA vendor 

Computer Voice Computerized Polygraph 
Stress Analyzer 

Initial cost of system 

Tuition for 1 student 

Length of training 

Cost of room and board factored at $70 per day 

Salary for student while in training 

(U.S.average) 

Number of exams that an examiner can conduct 

per day 

Average percent of inconclusive results on 

exams 

Can unit analyze audio tapes for truth 

verification? 

Do drugs, medical condition, or age affect 

testing? 

Total cost to purchase 1 unit and train 1 agent 


1.05 

1.06HISTORY OF VSA TECHNOLOGY 

$9,250.00 $13.000.00 

$1.215.00 $3,000.00 

6 days 8 weeks 

$420.00 $3,920.00 

$769.23 $6,153.84 

7 exams 2 exams 

0% 20% 

Yes No 

No Yes 

$11,654 $26,073.84 
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In 1970, and prior to the publishing of Lippold's article in 1971, three military officers 
retired from the U.S. Army and formed a company which they named Delctor 
Counterintelligence and Security (CIS). The three officers were Alan Bell, Bill Ford and 
Charles McQuiston. Bell's expertise was in counterintelligence, Ford's was in electronics, 
and McQuiston's was in polygraphy. Ford had invented an electronic device that utilized the 
theory oflippold, Halliday and Redfearn in which he tape-recordedthe humanvoice, slowed 
it down three to four times its normal rate, and fed it through several lowpass filters which 
then fed the signal into an EKG strip chart recorder. The strip chart recorder then made chart 
tracings on heat sensitive paper. They named their device the Psychological Stress Evaluator 
(PSE). Although Dektor CIS was intended to be a security company, the PSE immediately 
became a success and their focus became centered on this system. One of the first individuals 
hired by Dektor was a polygraph examiner with a local police department which had started 
utilizing the PSE. This individual, along with McQuiston, wrote a three-day training course 
based on their polygraph experience and utilizing polygraph formats. 

According to Allan Bell Enterprises [11, "All lie-detection examinations or evaluations are 
predicated upon the fact that telling a significant lie will produce some degree of 
psychological stress. Psychological stress, in turn, causes a number of physiological 
changes." Polygraph takes advantage of these physiological changes to measure one's 
psychological stress. Polygraphs customarily measure changes in blood pressure, hormone 
levels, stomach and chest breathing patterns, galvanic skin response (perspiration), the pulse 
wave and amplitude. 

VSA literature [9] points to a descriptor of the physiological basis for the micro muscle 
tremor or microtremor. This paper describes "a slight oscillation at approximately 10cycles 
per second" (Le. physiological tremors) during the normal contraction of voluntary muscle. 
All muscles in the body, including the vocal chords, vibrate in the 8 to 12 Hz range. It is 
these microtremors that the VSA vendors claim to be the sole source of detecting if an 
individual is lying. This human system is a feedback loop, similar to a thermostatheater that 
will maintain an average temperature. By raising the temperature a little above the setting, 
it will switch off, and not come back on until the temperature is a little below it. Just as the 
temperature swings up and down over time, so too do the muscles tighten and loosen as they 
seek to maintain a constant tension. In moments of stress, the body prepares for fight or 
flight by increasing the readiness of its muscles to spring into action. The muscle vibration 
increases. This muscle tremor is usually evident in a hand tremor, as when one holds their 
arm out in an extended position. This indicates that restricting the blood supply to the 
muscle can reduce the tremor. Physiological tremor is "the ripple that is superimposed on 
the voluntary contraction of a particular muscle and arises solely from this activity." Most 
people exhibit a fine, rapid tremor of their hands when their arms are outstretched. 
According to the Merck Manual [121, "enhanced physiologic tremor maybe produced by 
anxiety, stress, fatigue, or metabolic derangements (ie. alcohol withdrawal, thyrotoxicosis) 
or by certain drugs (ie. caffeine and other phosphodiesterase inhibitors, beta-adrenergic 
agonists, and adrenal corticosteroids beta-blocker: propranolol)." 
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The initial VSA development entitled "Application of Voice Analysis Method" was funded 
by the U S .  Army Land Warfare Laboratory, performed by Decision Control, Incorporated 
of Bethesda, Maryland. This study was performed to assess the capability of a method of 
voice analysis to detect stress in the spoken response, "no." The studies recorded voice 
responses of individuals undergoing polygraph testing and were analyzed for their stress 
values. The results were then compared to the polygraph interpretations. In this stress 
response comparison, the waveform results were similar. A prototype voice analyzer was 
developed, fabricated and tested. The device processed recorded audio and provided three 
voice measures. The introduction to this report indicates that a previous study [14], had 
shown that an analysis of the response "no" could provide an accurate assessment of whether 
the response was truthful or deceitful. Six semi-orthogonal measures and a number of 
bandpass frequencies were used in the study. The experiment simultaneously used the 
polygraph to determine the existence of stress. The results concluded that it was highly 
desirable to reduce the number of measures, and to determine the best set of bandpass 
frequencies. 

U.S. Army Land Warfare Laboratory Technical Report #LWL-CR-O3B70 by Joseph F. 
Kubis of Fordham University, titled "Comparison of Voice Analysis and Polygraph as Lie 
Detection Procedures" (commonly referred to as Yhe Kubis Report."), completed a study 
comparing the two types of lie detecting systems [8]. Two voice analysis systems were 
evaluated as lie detection devices in a simulated theft experiment, which utilized 174 
subjects. One group of subjects was examined with the polygraph, at the same time their 
voice recordings were taken. A smaller group was tested only with their voice being 
recorded. The results failed to demonstrate that either of the voice analysis systems were 
accurate in identifying the three basic roles of Thief, Lookout, and Innocent Subject in a 
simulated theft experiment. The polygraph achieved an accuracy score of 76 percent, a value 
comparable to that obtained in previous studies using the simulated theft paradigm. 
Independent raters, who knew nothing about the characteristics of the experiment subjects, 
also obtained 50 to 60 percent accuracy scores in the examination of the polygraph charts. 
In the Kubis report, the results showed that the voice recordings were not statistically 
significant. It showed that lower accuracy using voice analysis was obtained with voice 
recorded and polygraph-tested subjectsthan with those who had their voice recorded without 
the polygraph. Audio recording monitors that were present during the interrogation sessions 
based their judgements more on their perceived impressions of the suspect rather than the 
output of the system. They were able to discriminate among Thief, Lookout, and Innocent 
Suspect. Based on these results, one could hypothesized that the simulated theft procedure 
induced a sufficient degree of emotional stress on a subject which indicates that is could be 
useful for lie detection research. 

Another study [2], takes issue with the Kubis Report, citing the experimental methodology 
as a "game model" with possibly insufficient induced stress for measurement, a noisy 
environment, and deviations from manufacturer-recommended questioning techniques. 

Polygraph-licensing laws in some states require lie detection to be accomplished specifically 
with a polygraph. These laws define lie detection equipment as equipment providing a 
permanent record of cardiograph (heart) and pneumograph (breathing) data. The earliest law 
was enacted in Kentucky in 1962. These legislation enactments made the VSA units illegal 
in some states. State-sponsored hearings in Florida in 1973and 1974resulted in an informal 
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acceptance of the PSE for law enforcement use in that state. North Carolina and Arkansas 
soon followed and formally authorized use of the PSE. 

I.07 

1.08 AVAILABLE VSA SYSTEMS 

Currently, there are many available VSA on the market today. The major VSA vendors 
market their products on a laptop with specific software, while a few are sold as an 
electronic device with the software embedded on its chips. Examples of VSAs currently 
available are described below. 

8.1 Psychological Stress Evaluator (PSE) 

Dektor Counterintelligence and Security, Inc. of Springfield,Virginia. The Canadian Patent 
#943230 (March 5, 1974) and United States Patent #3,971,034 (July 20, 1976), submitted 
by Allan D. Bell, Jr., Wilson H. Ford, and Charles R. McQuiston, describe their 
"Physiological Response Analysis Method and Apparatus." 

This unit was the first VSA unit on the market, released in March of 1971. It was designed 
to be used in the same manner as a polygraph, one-on-one testing for the detection of 
deception. It was a black box with an output in the form of a waveform via thermograph 
readout. The PSE senses the difference and records the change in the inaudible FM qualities 
of the voice on a chart. When an experienced examiner interprets the chart, it reveals the key 
stress areas of the person being questioned. 

8.2 Lantern 

The Diogenes Group, Inc. 
(407) 933-4839 
FAX: (407) 935-0911 

The Diogenes Group Inc., established in 1995, produces a system called the Lantern. The 
Lantern instrumentation consists of an analog-type magnetic tape recorder with integral 
microphone, a Pentium laptop computer serving as a high-speed processor, and an extensive 
program of copyrighted, proprietary processing software designed specifically for ease of 
operation. The Windows 3.1 1"" or Windows 95TMbased software is also responsible for 
control of all processing operations?display format and presentation, and the printing of hard 
copies of the waveforms representing the behavior of the microtremor. The tape recorder is 
operated throughout an interview to create the primary record, which includes both questions 
and answers in the context in which they occurred. The monitor output of the recorder 
provides the real-time input to the digital processor. The examiner is able to control, with a 
single finger, high-sample rate digital capture of the sound of each answer. [6] 

8.3 Vericator 
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Tmstech Ltd. 

Integritek Systems, Inc., 

111 Bermuda Ave. 

Tampa, FL 33606 

+1 813 250 3922 


Tmstech Ltd. was founded in 1997, and produces a system called Vericator, formally known 

as the Truster Pro. This system allows the user to use their own personal computer with the 

following requirements: WIN95 TM / WIN9Sm/NT 4.0TM,Pentiumm I1or "32 MB RAM 

to 128 MB RAM, a microphone, CD ROM Drive (double speed), and a16 Bit Soundcard 

(full duplex). The package includes a Vericator CD ,Stereo T-Connector (for connecting 

your PC and telephone), Vericator User Manual. It features automatic calibration process; 

analysis of deception in real-time; analysis of pre-recorded online conversationshnterviews 

and TV or radio segments. The summary and technical reports can be viewed, saved and 

printed. There are graph displays for advanced diagnosis; four built-in psychological lie 

detection patterns; filtering system for reducing background noise. [7] 


8.4 Computerized Voice Stress Analyzer (CVSA) 

National Institute for Truth Verification (NITV) 

West Palm Beach, Florida 33414 

(561) 798-6280 

FAX: (561) 798-1594 


In 1986,NITV began to market the Computerized Voice Stress Analyzer (CVSA), currently 

known as the most popular VSA system available. NITV advertisements claims that the 

system is in use in more than 500 law enforcement agencies, and offers as evidence, letters 

of endorsements from agencies throughout the United States. NITV claims to market only 

to law enforcement agencies in order to prevent it from being used by criminals to identify 

undercover agents. [5]  


8.5 VSA Mark I000 
- Marketed by CCS International, Inc.: 

This system is marketed as a covert electronic lie detection system providing fast analysis, 
fast results and fast answers. With its built-in tape recorder, the VSA Mark 1000allows you 
to analyze audio data at a later time. A clear, precise digital readout is given in both LED and 
printed format, where the results are instantaneous. For more information go to 
http://www.spyzone.com/catalog/index.html.
[4] 

4.1 VSA-15 
- Marketed by CCS International, Inc.: 

This system is similar to the VSA Mark 1000, but is marketed as a miniaturized hand 
held system. This unit is targeted for the non-professional user. For more information go 
to http://www.spyzone.com/catalog/index.html.[4] 

4.1 Xandi Electronics 
- Markets a Voice Stress Analyzer Kit (Model # XVA250) for $59. 
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It has 10 LEDs. The System is powered by either a 9 volt battery or a power adapter. As 
you speak into the analyzer, the LEDs in the normal position (the left) should light up. 
Under stress conditions, more of the LEDs on the right-hand side will light up in the stress 
position, and fewer will light up in the normal position. [111 

4.2 TVSA3 
- This VSA software is freeware off the World Wide. 

The TVSA3 is a software program, which inputs digital audio files, and outputs new audio 
files mixed with a changing tone in the background. These background tones indicate the 
changing stress levels of the individual that is speaking. A higher tone indicates a higher 
stress level. The lone control is a threshold setting, which determines how high the voice 
stress frequency must be to trigger the background tone. The threshold setting is treated as 
a percentage of the stress range found in a given recording. [3] 

Only the Diogenes-Lantern and Vericator were assessed in this study and will be discussed 
in this report. These are the most popular VSA units available on the commercial market 
today. Another popular unit is the CVSA, but the company decided not to participate in this 
study. 

1.05 METHODS OF VOICE STRESS ANALYSIS AND CLASSIFICATIONS 

To better understand the aspects of stress speech in a human, the Air Force Research 
Laboratory (AFRL) worked with Dr. John Hansen of the University of Colorado, to 
determine if it is feasible to recognize and classify stress in an individual's voice. Dr. 
Hansen is a world known expert in the area of voice stress. The report is included in this 
report, and is attached as an Appendix C. He states " it is not inconceivable that under 
extreme levels of stress, that muscle control throughout the speaker will be affected, 
including muscles associated with speech production". In this study he used the Speech 
under Simulated and Actual Stress (SUSAS) database. This database includes stress speech 
such as angry, loud, lombard (speaking under noisy conditions), and fear stress. In his 
report, he reviewed literature that discussed past speech under stress studies. He analyzed 
stress in speech, in which he concluded that voice stress is caused by factors that introduce 
variability into the speech production process. These variabilities or features include 
duration, glottal source factors, pitch distribution, spectral structure and intensity. Duration 
includes four area: (1) overall word duration, (2) individual speech class (vowel, consonant, 
semivowel, and diphthong) duration, ( 3 )  duration shifts between classes, and (4)speechclass 
duration ratios. Glottal source factors measured the spectral slope of those vowels, which 
were longer than 5 frames or 96 msec. The first and second formants locations are measured 
to determine the spectral structure. Intensity is a calculation of energy in an voice signal. 
These variabilities could also be speaker dependent. By using these various linear and 
nonlinear features, and testing with the Bayesian hypothesis method, it was concluded that 
different types of emotional stress could be classified. The Bayesian hypothesis method is 
a stress detection technique to determine if a given piece of audio data is either neutral 
speech or a certain classification of stress speech. From the results, it suggests that it is 
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unlikely that a single feature could be used to accurately detect deceptive stressed speech. 
The more features that are fused together, the stress type recognition improves. It also shows 
that some features, single handed, can detect a specific type of stress better than other 
features. For an example, the pitch feature could detect loud stress better than angry and 
lombard stress. Whereas, the spectral structure feature could detect angry stress better. 
Classification of deceptive stress was not tested due to the unavailability of a deceptive 
database. The collection of a deceptive database is a recommendation of future work (see 
section 8.0). 

1.06 TESTING 

The goal of these tests is to determine how effective these VSA units can detect stress. 
VSA vendors have marketed their technology as scientific, as it takes advantage of the 
human micromuscle tremor in the vocal tract. These tests attempt to prove or disapprove 
these theories. 

6.1 Test Objective 

The objective of these tests is to measure the output response of two VSA systems, given 
several controlled input signals. This will be used to verify the manufacturer’s claims of 
operation for each analyzer. The degree of source consistency of results for each analyzer 
will then be determined. This will determine the correct process to use when recording audio 
for evaluation. Finally, the VSA systems will be laboratory tested and field tested by 
evaluating them with trained laboratory analysis and experienced police investigators. 

6.2 Scope/Approach 

This effort will test and evaluate two (2) commercially available voice stress analyzers. 
Tests will be accomplished using a series of test signals that contain information distributed 
over the frequency spectrum, generally covered by the spectrum of normal speech. Analysis 
of the VSA test results will be conducted to determine 

- VSA response characteristics 

-	 Degree of accuracy compared to the manufacturers theory of operation and 
technical specifications 

- Accuracy of result repeatability 

- Evaluate under real world conditions 

The test approach taken in this plan is to consider each analyzer to be a black box, and to 
record its output response to known input test signals. 

6.3 Test and Analysis Procedures 

The procedures are developed for three areas - procedures for the development of test tapes 
containing artificial signals, source consistence test, and analysis and evaluation of audio 
data with stress ground truth. 
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6.4 Systems Tested 

Vericator and Diogenes Lantern 

6.5 Technical Testing 

Trained analysis in a laboratory setting completed the technical testing. These analysis were 
each trained through the VSA vendor training programs. 

6.5.1 Artificial Signal Test (Test I) 

6.5.1.1 Objective (Test 1) 

Test 1 of the VSA Evaluation was to determine if the VSA units detect the frequency 
modulation of a signal. These signals are similar to the microtremor, which manufacturers 
state is their theory of operation. For the purposes of this test we utilized the Vericator 
system and the Diogenes Lantern system. A generically generated signal database of FM 
frequencies, occurring at different rates anddepths of modulation, was processed repeatedly 
through the systems. 

6.5.1.2 Test ISet-Up 

The test was performed on laptop computers that contained the Vericator and Diogenes 
Lantern software. The signals were fed to the laptops from a desktop PC. The desktop PC 
dispatched the artificial signals using the commercial off-the-shelf (COTS) application Cool 
Edit. Cool Edit is a digital audio editor for a Windows base system. It is used to record and 
play files in a wide variety of audio formats, edit files and mix them together, and convert 
audio files from one format to another. Cool Edit also gives the ability to create sounds from 
scratch with generated tones and generated noise signals. 

The FM test signals that comprise the signal database for Test 1 were generated using Cool 
Edit. These FM signals were generated at the carrier fiequencies of 80 Hz and 160Hz (these 
frequencies represented the fundamental frequency on a speech signal), with varying 
modulation rates and depth of modulation rates (Figure 1). Modulating rates measures how 
fast the signal modulates, and depth represents how much the signal modulates from the 
carrier frequency. 
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Figure 1: FM Recorder Test Signals @ 80 Hz & 160 Hz 

The test signals were recorded in 15 second utterances. Each signal was passed through 
each VSA system. The test results were recorded on data spreadsheets, and the wave 
analysis was labeled and printed. Once the test waves were all analyzed the 
documentation was compared to determine consistency. 

6.5.1.3 Vericator 

For the purposes of this test we utilized the "Online Mode" of the Vericator application. The 
"Online Mode" measures five voice parameters SPT, SPJ, JQ, AVJ, SPLC-SOS (see 
appendix A) in real time (< 2 second delay) to detect stress. The signals were processed 
through the Vericator in short utterances. A few signals were attempted with a consistent 
result of "No indication of voice segments" or "Not enough voice samples.'' 

To overcome the inability to analyze the bare FM tones, we added a voice to the signal to the 
tone. After recording a female voice, analyzing it and determining the most consistent 
signal, the FM frequency was added. The system was able to identify the signal and process 
it. The system responded with a spike in the analysis wave every time the FM frequency was 
introduced to the signal. These results were recorded in the test log for the Vericator 
analysis. The signals listed in figure 1 were processed through the Vericator system. 

6.5.1.4 Diogenes Lantern 
The test waves were re-sampled to an 11025-sampling rate, 8-bit mono to facilitate the 
acceptance of the signal by the Diogenes Lantern system. The FM signals were 3-4 seconds 
long. The signals were processed through the Lantern system. The graphs were labeled 
according to frequency, depth of modulation, and modulation rate. The signals listed in 
figure 1 were processed through the Diogenes Lantern. 

6.5.1.5 Summary (Test I) 

The tests were performed, the data was documented, and the results were compared. The 
Vericator and Diogenes Lantern Systems were utilized in this evaluation and their 
technology was tested. The primary goal of this phase of the VSA evaluation was to 
determine if the microtremor claim is the VSA's true theory of operation. For the purposes 
ofthis test the nature of the results, stress or no stress indicated, were not taken into account, 
The results were found to be consistent across the board with little variation in the results in 
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response to the adjustmentskhanges in the modulation or depth of modulation rates. For 
example, the analysis of the 80Hz FM test wave, with a depth of modulation rate of 1 Hz and 
a modulation rate of 1 Hz, differed very little from an 80 Hz FM test wave with a depth of 
modulation of 4 Hz and a modulation rate of 25 Hz. Since there was no variation of 
indicated stress from different input signals, it can be assumed that the systems tested do not 
use microtremors as indicated in their claims. 

It was determined, late in the testing phase of this project, that the Diogenes Lantern System 
measure the energy change of the spectrum envelope between 20 Hz and 40 Hz. This is what 
the Diogenes Lantern System claims to be microtremors. It is the change of energy in the 
speech envelope. If an individual is under stress, their vocal tract muscles are likely to 
tighten up. When the vocal tract muscles tighten up the energy of the voice signal becomes 
abrupt when the individual starts and finishes talking. During the time an individual talks, 
there is less variation of energy within this the 20 Hz bandpass. When an individual is not 
stressed, their voice energy slowly leads to a peak when they start to speak, then the energy 
varies until the individual stops speaking where the energy slowly tails off. This algorithm 
was coded in the laboratory with the same audio signal inputted. As seen in the waveforms 
in figure 2a and 2b, the results were identical when compared to the Diogenes Lantern 
system. The waveform comparison could also be seen in figure 2c and 2d. These figures 
prove that the algorithm used in the Diogenes Lantern system is energy based. This 
discovery makes the artificial signal test obsolete since the objective was to determine if 
these units detect frequency modulation of an audio signal. 

The Vericator claims that it analyzes multiple features of speech to determine ifan individual 
is lying. It is was not proven if this claim is true, since this information is proprietary, nor 
was it proven what speech features are being analyzed. However, it is likely that they do 
process multiple algorithms simultaneously due to the multiple waveforms being display. 
Since, the Vericator did not react to this test, it is safe to say that the measurement of 
micromuscle tremor is not one of the speech feature algorithms being used in their system. 

_Y____... -.-

I 

Figure 2a Diogenes Lantern System Output (No Stress Indicated) 
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Figure 2b Matlab Output (No Stress Indicated) 

Figure 2c Diogenes Lantern System Output (Stress Indicated) 

Figure 2: Waverforms to the Diogenes Lantern system 

6.5.2 Source Consistency Tests (test 2) 
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One of the major questions presented to the engineers testing the voice stress systems, "is 
there a difference in the analysis of an audio file utilizing different medias?" The different 
medias could be a Digital Audio Tape system (DAT), a cassette recorder, or telephone input 
device. Each recording device has their own different properties, which could effect the 
overall analysis by the examiners. 

6.5.2.1 Objective (test 2) 
This experiment is designed to compare the analysis of identical signals utilizing the 
different medias. 

6.5.2.2 Scope 

Identical signals were fed several times into these medias, according to figure 3, to evaluate 
the consistency of the results from the two VSA systems. The analysis of the output was then 
compared to the analysis of the output of the same signal from a different type of media. 
This gave indications of whether or not different types of medias play an important role in 
the evaluation and analysis of the voiced responses. 

6.5.2.3 Test 

AFRL and ACS Defense jointly collected 60 voiced utterances from different males and 
females and recorded those voice utterances on DAT, computer and cassette media. These 
utterances were collected simultaneously by the computer (. wav format), analog cassette 
format, and digital via a 48KHz Digital Audio Tape (DAT) recorder (see figure 3). The 
audio was analyzed separately from each of the three medias (cassette, computer, and DAT). 
The live feed was connected directly into the VSA computer, the output was analyzed and 
the results were printed. At the same time, the utterance was recorded on the DAT, this 
signal was latter processed in the VSA unit for reanalysis and the results were printed. Again 
at the same time, the utterance was recorded on a cassette tape and this signal was latter 
processed in the VSA unit to be re-analyzed, and again the results were printed. 
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Figure 3: Test Configuration for Source Consistency Tests 

6.5.2.4 Examination Results 

Voiced analysis reported consistent results utilizing DAT and live voice. Each utterance was 
examined and found that all the waveforms and analysis was consistently identical. When 
using a cassette recorder similar results were obtained as in the live data. When recording 
with a cassette player, care needs to be taken when adjusting the automatic gain control 
(AGC). If the recording volume is not set accurately, the input voice signal gets clipped, so 
when the output waveform is processed it gets distorted too. This could result in an analysis 
which is completely different from the truth, therefore providing and incorrect result by the 
examiner. These discrepancies can be seen in figures 4a - 4d, when using the Diogenes 
Lantern system. When using the Vericator these discrepancies are also evident. The 
Vericator results reacted differently each time the same clipped data was inputted into the 
system. For example, if a clipped audio segment was processed in the Vericator, the system 
may display truth, while at another time that same clipped data would cause the system to 
display false statement. 

Reviewing the charts in figure 4, showshow much the waveform will change when recording 
with the cassette recorder without the AGC set. The input file (top waveform) is consistent 
for figure 4a, 4b, and 4c. It is clipped for figure 4d. This corrupts the output signal (bottom 
waveform), as seen when comparing figure 4d with the others. Other waveforms can be 
reviewed in appendix B. 

I"_.---- _.-- --.--~-
-I__-" _I B 
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Figure 4a: Original Signal 

Figure 4b: Data recorded on DAT 
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Figure 4c: Data recorded on cassette recorded with the AGC set 

... 

.-e--
. 

Figure 4d: Data recorded on cassette recorded without the AGC set 
Figure 4: Waveform changes using the cassette recorder without the AGC set 

6.5.2.5 Summary Test 2 

From the results in test 2 it is recommended to perform all analysis, when recording, using 
the DAT as a recording media. This eliminates any media effects on the audio signal and 
provides consistent results. It is also absolutely necessary to use a Shure microphone model 
SM58, or one with equivalent specifications. When using the cassette recorder, it was shown 
that human error could change the results of any findings. As shown, this type of recording 
distorts the input audio signal, therefore providing the VSA units clipped audio data to 
process. 

6.5.3 Objective (Test 3) 

The next stage of the VSA evaluation, consisted of assessing the results of known-ground
truth data when processed through the Vericator and Diogenes systems. Segmented audio 
data was administered to the systems from law enforcement cases that have been solved. 

6.5.3.1 Data Evaluation (Test 3) 

Data: 	 Audio statements from 2 sets of polygraph tests performed by a certified 
polygraphist 

Evaluators: By analysis who were certified by Diogenes and Vericator manufacturers. 

6.5.3.2 Data collection and Down Sampling 
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Six videotapes were obtained from DODPI, of two suspects in two separate murder cases. 
The audio portion of the videotape was extracted and digitized into .wav files. The audio 
files were then down sample from 48kHz down to 11.025kHz to accommodate the 
manufacture’s requirements. This process is necessary to make the data compatible to the 
VSA units, since these units are programmed to accept data at the 11.025kHz sampling rate. 
These digital audio files were inserted into the VSA computers. 

6.5.3.3 Segmentation 

Once the exact audio data was entered and stored in the two computer systems we then 
proceeded to segment the audio. For the Lantern system we had to create individual .wav 
files for each utterance that the defendant made, usually answered by a yes or no in these 
cases. This was done to allow short utterances to be processed by the Lantern as suggested 
by the manufacturer. There were a total of 45 questions ranging from relevant to non
relevant questions. 

The Vericator performs it’s own unique segmentation. We segmented the audio utilizing 
their own process. This was done through the off-line mode. 

6.5.3.4 Testing 

Each audio segment was processed through the Lantern system and performed a separate 
analysis of each wave pattern. Each waveform was compared to the other to verify any 
distinct changes due to stress. Each file that gave indication of stress were marked and 
compared to the baseline. 

Each audio file was processed through the off-line mode of the Vericator. Results were 
automatically recorded by the system. ’ 

6.5.3.5 Results 

The stress ground truth was obtained through the polygraph examiner and court proceedings 
via the outcomes of each of the interviews. Both suspects confessed and were subsequently 
convicted of murder. All of the relevant stress sentences were verified. Each of the 48 
utterances was analyzed and compared to the ground truth. Each system gave indications 
of high levels of stress where stress indicators were verified. The Vericator system scored 
100%in its indication of some form of stress, where as it displayed deceitful, high stress, or 
probably lying. The Lantern system also scored 100% in its indication of stress through the 
waveform analysis. Both systems gave the examiner a conclusive indication of relevant 
stress. 

6.6 FIELD TESTING 

In the field testing portion of this study, two local police investigators obtained a VSA 
system, Mike Adist of the Canastota, New York Police Department and James F. Masucci 
of the Rome, New York Police Department. Mike Adist used the Vericator and James 
Masucci used the Diogenes Lantern. The goal of this phase of testing was to determine the 
feasibility of these systems in the law enforcement environment. It also provided the unbias 
opinion of an experienced investigator. The following are their reports: 
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I have been in Law enforcement for the part twenty-one years, and during this time I 
have had the opportunity to see all facets of crime and investigations. I have been 
involved in crimes dealing with the least punishable to the severest of them all. I have 
had the opportunity to attend schools that taught me how to detect when a suspect is 
being deceptive during questioning. In some cases it was difficult to determine if a 
suspect was deceptive, and that made my job harder until the summer of 1997 when I 
came to the Law Enforcement Analysis Facility (LEAF) for help. 

My first contact was with Sharon Walters who advised me that the US.Government 
(Military) and a group of Research Technicians (Private Contractors) at the Rome 
Research and Technology Facility were about to take on the task of evaluating some 
technology dealing with truth verification. I was also told that this evaluation might be 
effective in Law Enforcement. At that time I was pleased for many reasons. 

I was asked to join this task force to assist the government in this evaluation, but first I 
was to learn what truth verification was. This required me to learn and study what a 
microtremor was, and how algorithms mathematically calculated the stress in a human 
voice. I reviewed the technology and was given a voice stress program called Truster-
Pro, now known at Vericator. Using this system 1 was able to interview a subject who 
may have been involved in a crime. First an interview is performed to determine the 
facts, as he/she knew them. Then, I was able to give the subject one or two tests to 
determine the truth or deception. Finally, a post interrogation would be conducted in an 
attempt to get a confession. 

Keeping the voice stress technology in mind during the testing of a subject, one should 
remember that this typc technology in it’s self is only as an investigative tool, and cannot 
be use to convict the subject. Along with observing a subject’s involuntary movements 
such as his eyes, legs and hands I have had great success the voice stress technology. 
have had the opportunity to use this technology on crime from Petty Larceny to Rapes, 
and have been able to determine either from the victim (s) or the suspect (s), the 
deception or truth. Not all of the testing were positive, but on the majority of them I was 
able to get true confessions to the crime. Over the past three years I would say that I have 
achieved a success rate of about 97 percent on tests vs. confessions. I believe in this 
systems capability of becoming a valuable investigative tool for the law enforcement 
officer on the streets of our cities, towns and villages across the nation. 

Respectfully, 

Michael G. Adsit 
Criminal Investigator 

I have been using the Lantern Voice Stress Analyzer from Diogenes since October of 
1997. I have had many rewarding experiences with the Lantern. I have successfully used 
it in homicide, arson, robbery, burglary, assault and sexual abuse cases. I do all of the 
testing for the Oneida County Child Advocacy Center, formerly known as the Oneida 
County Sexual Abuse Task Force. I point this out to show that I have tried the Lantern on 
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just about every type of crime. Although I did not keep statistics, I feel that I can safely 
say that with the aid of the Lantern, I have been able to eliminate about as many suspects 
as I have found reason to "dig into " a little more. 

I am not much of a technical expert, but I have made the following observations. I do 
believe the theory of the micro-muscle tremor and the need for "jeopardy." I have found 
that without jeopardy, or a fear of some consequence to lying, you do not get accurate 
charts. I have seen a tremendous difference in the voice stress patterns when there is 
jeopardy - vs - no jeopardy. For example, I have told suspects to intentionally lie on 
certain questions during the test. I have found that when they do lie over something that 
means nothing, you don't get a clear-cut stress pattern. I have seen a small amount of 
"stress" in those answers, but nothing comparable to a stress pattern when the suspect lies 
on a relevant question. 

As far as recorded material being analyzed by the Lantern, I personally am not a big 
proponent. I have had some success in analyzing audiotapes, but 1find the charts much 
more difficult to analyze. I have used both cassette and DAT and I really don't see much 
of a difference between the two. They are both just as difficult for me to interpret. The 
patterns seem to appear much different that when a "live" test is administered. I do not 
feel that I can say that the taped material gives inaccurate readings, it may be just a 
personal preference on my part. 

Another area of concern that I have concerning "live tests" is the possibility of 
interference. I have noticed that if I am conducting a test in a room, which contains a 
computer, there are noticeable differences in the patterns produced. I have shut the 
computer off and then asked the same question and received the same answer from the 
suspect, but the pattern is now different. Assuming that there was no other ambient noise 
during both times the question was asked, the patterns should be the same, except of 
course, if the interference was coming from the computer. On the same note, I also have 
noticed that possibly some interference caused from fluorescent lights. This should be an 
area of concern and perhaps more testing should be done to determine if the Lantern 
operates effectively under the above listed conditions. 

One final and perhaps most important point I would make regarding the 
Lantern is the fact that you should not rely solely on the charts to make a determination if 
someone is "lying." I am not saying that Diogenes professes that this is a "lie detector", 
actually they profess the opposite. I am just saying that this should never be looked at as 
a "lie detector." I have truly found that it CANNOT detect lies. As you know, it DOES 
detect stress. Stress, however, does not always equate to a "lie." I have found in several 
cases that a person "fails", if you will, on all relevanthime questions, but has been found 
to have not committed the crime. 

I will close by saying that my experiences with the Lantern have been very positive, 
however, it cannot be looked upon as a "magic bullet." It is simply an investigative tool. 
Interrogation and the manner in which questions are formulated are very important. I 
truly believe that a person that is not strong in the interrogation area will not be as 
successful with it, as the person that possesses strong interrogation skills. There is much 
open to interpretation on the charts as far as 1 can see. It is very situational and again, can 
NEVER be determined a "lie detector." 

James F. Masucci 
Rome P.D. 05/17/00 
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These two reports reinforce the results of the technical testing, in that these systems do 
indicate stress. Caution should be taken when using these systems. They should only be 
used as investigator tool, and not total rely on these systems for a case conclusion. 

1.07 CONCLUSION 

After reviewing the three technical tests performed, it could be stated that these two VSA 
units do recognize stress. Although these systems state they detect deception, this was not 
proven. This study does show, from a number of speech under stress studies, that linear and 
non-linear features are useful for stress classification. Due to the lack of deceptive stress data 
available, classification of deceptive stress versus emotional stress or physical stress was not 
tested. This is a vital role in the detection and classification of stress. Many suspects are 
under an extreme amount of stress when being interrogated. Do these VSA systems actually 
differentiate between the different types of stress? This still needs to be proven. 

It was shown, under test 1, that the Diogenes Lantern system detects stress via the amount 
of energy in the speech envelope. Even though this system performed well under the 
technical and field tests, it seems from an engineering point of view, that one feature, such 
as duration, glottal source factors, pitch distribution, spectral structure, or intensity, is 
insufficient to detect and classify deceptive stress. In the study under Dr. Hansen, it was 
shown that fusion of features help to increase the accuracy of stress classification. 

It was proven that the systems tested will and do give the same response when the audio is 
recorded as opposed to live. The only criterion is when recording using a cassette player, set 
the AGC, this will prevent any audio clipping. To eliminate the possibility of this error, 
recording with a DAT is the safest way to go. 

1.08 SUGGESTED FOLLOW ON 

As it was stated, the biggest challenge that was encountered during this project, was the 
unavailability of sufficient deceptive stress data with ground truth. To make an accurate 
assessment of these systems, in respect to detecting deception, this data is needed. To 
develop this database three parties need to be involved. Walter Reed Army Institute of 
Research (WRAIR) will be tasked to collecthalyze a robust stress database, while 
evaluating deceptive stress vs. physiological and biochemical stress. The Department of 
Defense Polygraph Institute (DODPI) along with AFRLRome Research Site (RRS) and 
NLECTCNE (LawEnforcementAnalysis Facility (LEAF)) will collect deceptive stress data 
and test VSA systems simultaneously with polygraph under neutral/"crime subject" 
conditions. Personnel from the LEAF will be used because of their extensive VSA 
background. 

For years, the Department of Justice and Law Enforcement Agencies in the United States 
have had only the polygraph technology as a "deception" indicator. With this recommend 
program, another "deception" indicator will be evaluated separately, and in a complimentary 
role with polygraph technology. AFRL/RRS will investigate this complimentary role, but 

19 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



in addition, possibly lay the groundwork for the future "fusion" of the two technologies, in 
an attempt to raise the confidence levels to the more acceptable standards of our justice 
system. 
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Appendix A 
SPT - A numeric value describing the relatively high frequency range. Vericator 
associates this value with emotional stress level. 

SPJ - A numeric value describing the relatively low frequency range. Vericator 
associates this value with cognitive stress level. 

JQ - A numeric value describing the distribution uniformity of the relativity low 
frequency range. Vericator associates this value with global stress level. 

AVJ - A numeric value describing the average range of the relativity low frequency 
range. Vericator associates this value with thinking level. 

SOS (SFLC) - Say Or Stop, a numeric value describing the changes in the SPT and SPJ 
values within a single sample sequence. Vericator associates this value with fear and the 
"breaking point" of the subject. 
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Appendix B 

Data recorded on a DAT 

Data recorded on cassette recorded with the AGC set 
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Data recorded on cassette recorded without the AGC set 

Data recorded live 
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Data recorded on a DAT 
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Data recorded on cassette recorded with the AGC set 
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Data recorded on cassette recorded without the AGC set 
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I Final Project Report 

1.1 Executive Summary: 

Current speech processing algorithms for classification and assessment of speaker stress which 

are designed to address DOD and law enforcement applications in such areas as automatic 

speech recognition, speaker identification, or gisting techniques for message sorting and 

translation lack the necessary signal processing capability to achieve reliable performance in 

emotional or task induced stressed environments. Unfortunately, in most applications requiring a 

man-machine interface, speaker monitoring, or analysis of subject interviews or telephone 

callers, it is specifically these high stress, emotional, deceitful, or emergency situations where 

reliable performance is critical. There have been much activity recently in the commercialization 

of voice stress analyzers for law enforcement applications. This study does not seek to directly 

prove or disprove these commercial systems, since in most cases the underlying details of their 

algorithms are typically revealed. Instead, we focus on features which have been used for stress 

assessment in both the linear and nonlinear speech processing domains. Those linear based 

speech features include: pitch, periodicity, jitter, glottal spectral slope, duration, intensity, 

formant locations, spectral structure as represented by the Mel-frequency cepstral parameters 

(MFCC), and the CVSA based measure. A number of nonlinear based features were also 

considered based on signal processing methods using the Teager Energy Operator (TEO). Our 

focus in this study was to use the measure based on an auditory critical-band frequency partition 

with temporal consistency represented by the autocorrelation envelope response across critical 

bands (Le., the TEO-CB-Auto-Env feature). These features were implemented and evaluated 

using speech data from a number of corpora (i.e., SUSAS, SUSC-0, and ASEC-Stress data). 

VOICE STRESS ANALYSIS: 

During the project period, we completed three manuscripts, which summarize research 

conducted over the past two years on voice stress analysis for NATO IST/TG-1. The studies 

focused on analysis of fundamental frequency (pitch), duration, intensity, glottial spectral 

structure, and vocal tract formant characteristics. An analysis of vocal tract articulatory profiles 

under stress was also considered. 
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STRESS CLASSIFICATION: 

In this area, we formulated an optimum dctection algorithm for stress classification based on 


Bayesian Hypothesis Testing. Five speech production feature areas, originally investigated for 

analysis of speech under stress, were evaluated for optimum stress detection using the SUSAS 

speech under simulated and actual stress database. Results showed that pitch (fundamental 

frequency) was the best feature for stress classification (equal error rate EER=11.4%), followed 

by individual phone class intensity and duration (ERR=23.1% and ERR=30.8%), and to a lessor 

degree glottal spectral slope (EER=32.2%). Individual formant locations (first and second) were 

not reliable features for stress classification (ERR=45.5% and 46.3%). 

Next, we considered features derived from signal processing scheme based on the nonlinear 


Teager Energy operator (TEO). This operator assumes that a speech resonance to be modeled by 


an AM/FM component. While several TEO based stress classification measures were proposed, 


here we present the TEO-CB-Auto-Env. This measure is based on an auditory based critical 


band frequency partition, followed by an autocorrelation envelope estimation. The feature 


represents the time-domain correlation of AM/FM based structure across a partitioned frequency 


band. Results presented for stress detection show that the TEO-CB-Auto-Env measure (mean 


classification rate of 94.2%) outperforms pitch (mean classification rate of 88.5%), vocal tract 


spectral characteristics as represented by the mel-frequency cepstral coefficients (MFCCs) (mean 


classification rate of 89.6% 


STRESS ASSESSMENT: 

During the project period, we extended the application of stress classification based measures to 


the problem of stress assessment. To determine the usefulness of the nonlinear TEO-CB-Auto-

Env measure for stress assessment, we considered an evaluation of SUSC-0 speech corpus from 

NATO IST/TG-01. This evaluation focused on the Mayday2 domain, which involved voice 

communication between an aircraft pilot and controller during an emergency where is engine 

fails. The TEO based measure was shown to follow the perceived level of stress in the extracted 

voice recordings based on a secondary informal listener evaluation. This result is meaningful, 

since the anchor neutral/stress models used in the assessment were based on speech data from the 

SUSAS stress database (Le., open speakers and open training speech material). 
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COMMERCIAL/CONVENTIONAL 'VSA' FEATURES: 

A number of commercial voice stress analyzers have recently appeared on the market. These 


methods are based on some form of speech signal processing to extract excitation information 

related to small microtremors which are believed to be associated with the laryngeal muscles 

during voiced excitation. Physiological tremor is produced through repetitive movement of 

muscle contraction and relaxation. Slow tremor occurs at rates between 3-5Hz, while rapid 

tremor occur between 6-12Hz. Benign hereditary tremor is a fine-to-coarse slow tremor that 

usually effects the hands, head, and voice. Such tremor generally increases with age, and in 

some cases (some families), ingestion of small amounts of alcohol markedly suppresses the 

tremor. Other forms of tremor in voice are associated with neurological speaker changes such as 

the resting tremor seen in Parkinson's speech. There are many causes of tremor, which include 

medical illness, drugs, stress, and brain disorders such as multiple sclerosis. 

The focus here is on how stress impacts the laryngeal muscles during normal production of 

speech, and whether speech processing algorithms/systems are able to extract and quantify such 

information if it exists. In our study, we focused on excitation features which include (i) 

normalized pitch, (ii) periodicity, and (iii) jitter. These features have long been used in the 

medical field for assessing changes in speech production due to pathology such as vocal fold 

cancer, vocal fold nodules, or other physically based change in the structure or movement of the 

vocal folds during phonation. Here, we evaluated these features for the purpose of voice stress 

classification using a Gaussian mixture model (GMM) classifier. In the evaluations, we 

considered a range of GMM classifier mixture weights, training iterations, static features with 

and without first and second order derivative features, and combinations with spectral 

parameters. The best GMM classifier included all three excitation features with first and second 

order derivatives, a feature trained variance threshold of 0.001, 64 Gaussian mixtures, and at 

least some form of overall vocal tract spectral structure if the data is available. It should be 

noted that these methods are effective only if the speaker conveys changes in his excitation, or in 

the laryngeal muscles associated with microtremors. A number of useful studies have considered 

the use of computer voice stress analyzers for the purpose of detection of deception. Some of 

these include: 
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D. VanDercar, J. Greaner, N. Hibler, C. Spielberger, S. Bloch, "A description 
and analysis of the Operation and Validity of the Psychological Stress 
Evaluator," Journal of Forensic Sciences,  vol. 2 5 ,  no. 1, pg. 174-188, Jan. 
1980. 

F. Horvath, "An Experimental Comparison of the Psychological Stress Evaluator 
and the Galvanic Skin Response in Detection of Deception," J o u r n a l  o f  Applied 
Psychology, vol. 63, no. 3, pp. 338-344, 1 9 7 8 .  

0. Lippold, "Physiological Tremor,'I S c i e n t i f i c  American, vol. 224, no. 3, pp. 
65-73, 1971. 

In addition to these references, there are a number of commercial voice stress analysis systems 

(e.g., Israeli system called TRUSTER, Psychological Stress Evaluator (PSE) by Verimetrics, 

Computerized Voice Stress Analyzer (CVSA), and others). Our findings suggest that if the input 

speaker does in fact produce microtremors in their laryngeal muscles during voiced speech 

production, then the simple filtering operation proposed in PSE (Bell, et. al, 1976), CVSA, and 

others, can extract the presence or absence of such tremor. It has been suggested that if the 

natural tremor is absent, then the speaker is experiencing stress, and if the fluctuations are 

present the person is not experiencing stress. Again, extreme caution should be exercised in 

using these devices because it is not necessarily true that the muscle tremor associated with stress 

or deception will always effect those laryngeal muscles using during phonation in the same 

manner for all speakers. This is a well known and documented observation in the area of vocal 

fold cancer detection (Hansen, Gavidia-Ceballos, Kaiser, 1998), since it is possible that a 

physiological change in the vocal folds (a cancer growth, or muscle change/paralysis) may not 

always impact the normal mucosal wave, and therefore will not be represented in the sound 

pressure wave which excites the vocal tract. We discuss a number of these issues in the 

summary and conclusions section. 

STRESS ASSESSMENT: Mount Carmel Law Enforcement Evaluation 

In the final section of this study, we consider the application of the voice excitation features used 


by commercial voice stress analyzers for stress assessment of the 911 audio recordings obtained 

from the Law Enforcement encounter with an extremist sect in Mount Carmel. These recordings 

were between the sect leader and a 91 1 operator during the FBI encounter. For analysis, we 

considered normalized pitch, periodicity, jitter, and a software implemented version of the 

commercial CVSA system. The resulting feature profiles were compared with feature profiles 
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obtained from an evaluation of speech data from the SUSAS speech unders stress database. The 

profiles for normalized pitch and periodicity did not appear to be reliable indicators of speaker 

stress. The CVSA profile did show some of the structure which were expected for Mt. Carmel 

data, but was not as consistent for SUSAS actual stressed speech (this could be explained 

because that speech portion of SUSAS was collected during amusement park roller coaster rides 

which could have introduced physical vibrations during speech production). An extensive 

evaluation of the entire series of sentences for stress assessment using pitch, spectral MFCC 

features, and the TEO-CB-Auto-Env measure showed that pitch and the new TEO-CB-Auto-Env 

measure produced more consistent assessment scores. A number of issues regarding successful 

stress classification and assessment using either traditional excitation features or nonlinear 

speech features must be addressed to achieve successhl voice stress analysis performance. 

Ultimately, the success of the measure rests on how the speaker imparts, either consciously or 

subconsciously, stress in their speech production process (either through controlled airflow from 

the lungs, muscle control of the vocal system articulators, choice of vocabulary). It is suggested 

that more success could be achieved if the subjective impression of the operator could be 

reduced for commercial VSA devices. Further training data for model adaptation, and 

establishing well recognized anchor neutral/stress models for a given speaker in context, should 

ultimately produce more reliable performance. At best, the available commercial systems should 

be used with caution if they are to be applied. 

1.2 Outline of Report 

The outline of this report is as follows. In Section 2, we provide a review of the literature in 

speech under stress. Next, in Section 3 we present a brief overview of results from analysis of 

speech production under stress which include pitch, speech duration, speech intensity, glottal 

spectral structure, and formant structure. Section 4 discusses methods considered for stress 

classification. This section focuses on previous approaches, Bayesian stress classification, linear 

feature classification, nonlinear based features. Section 5 considers the use of stressed 

classification features for stress assessment using actual stressed speech from a pilot emergency 

(MAYDAY2 portion of the SUSC-0 corpus from NATO). This worked focused on normalized 
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pitch, spectral structure using MFCCs, and the nonlinear TEO-CB-Auto-Env measure. Finally, 

Section 7 presents a series of probe evaluations of speech data from Mount Cannel. This 

represents speech data from a high stress law enforcement encounter. Since the available speech 

was limited, the analysis was restricted to comparisons of feature profiles for linear features, and 

assessment evaluations using anchor models trained with SUSAS stressed speech data. In the 

Appendix (Section 9), we identify the software, which has been implemented and will be 

delivered to the sponsor as part of this project. 
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2 Speech Under Stress: Review of the Literature 
Stress is a psychological state that is a response to a perceived threat or task demand and is 

accompanied by specific emotions (e.g., fear, anxiety, anger). Initial investigations of verbal 

indicators of stress have focused on identifying speech markers of stress (e.g., stuttering, 

repetition, tongue-slip). Psychiatrists agree that verbal markers of stress range fiom highly 

visible to invisible markers as perceived by the listener (Goldberger and Breznitz, 1982), and that 

these markers are continuously monitored both consciously and subconsciously by the speaker 

and thus are prone to correction. 

2.1 Acoustic Correlates of Stress and Emotion in Speech 

A number of studies have considered analysis of speech under simulated and actual stress 

conditions (see Table l), though changcs in speech characteristics remain unclear. Thus far, 

most research has been limited in scope, often using only one or two subjects and analyzing a 

single parameter (often f o ) .  It is not unusual for researchers to report conflicting results, due to 

differences in experimental design, level of actual or simulated stress, or interpretation of results. 

For example, some studies concentrate on analysis of recordings from actual stressful situations 

(Kuroda, et al. 1976; Simonov and Frolov, 1977; Streeter, et al., 1983; Williams and Stevens, 

1972). There is usually little doubt as to the presence of stress in these recordings, however a 

quantitative analysis can only be carried out if recordings of the talker speaking the same 

utterances under stress-free conditions is available. In addition, some researchers argue that 

speakers in these situations may experience several emotions simultaneously, (e.g., the 

Hindenburg announcer most likely experienced combinations of fear, grief, and anxiety). 

Another group of studies have been performed using simulated stress or emotions (Hecker, et al., 

1968; Hollien and Hicks, 1981a, 19Xlb; Williams and Stevens, 1972). This offers the advantage 

of a controlled environment, where a single emotion can be examined with little background 

noise. In some cases, variable task levels of stress have been used. Other advantages include 

larger data sets with multiple speakers. The major disadvantage in these studies have been the 

reduction in task stress levels. In addition, studies using actors may produce exaggerated 

caricatures of emotions in speech. 
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In previous work, Williams and Stevens, (1972), and Hecker, et a1.(1968) found that f o '  to be 

the acoustic property most sensitive to the presence of stress. There are several reasons why 

changes in f, with time provide information on emotional state. For example, respiration is 

frequently a sensitive indicator in certain emotional situations. When an individual experiences a 

stressful situation, his respiration rate increases. This presumably will increase subglottal 

pressure during speech, which is known to increase f ,  during voiced sections (Pickett, 1980). 

An increased respiration rate also leads to shorter durations of speech between breaths, which 

would affect the temporal pattern (articulation rate). The dryness of the mouth found during 

situations of excitement, fear, anger, etc. can also effect speech production (e.g., muscle activity 

of larynx and condition of vocal cords). Muscle activity of the larynx and vibrating vocal cords 

directly affect the volume velocity through the glottis, which in turn affects f a .  Other muscles, 

(for example those controlling tongue, lips, jaw, etc.) shape the resonant cavities for sound and 

therefore do not have a direct influencc on f,. 

2.2 Analysis Using Simulated Stress or Emotion 

Here, analysis of studies using simulated stress or emotion are considered first (see Table 1). 

Here, we place emphasis on the study by Williams and Stevens (1972) since they considered 

analysis of recordings from both simulated2 and actual3 emotional environments. Hicks and 

Hollien (1981a,b) simulated stress by using mild electrical shock. Hecker et al., (1968) 

simulated stress by having subjects perform a timed arithmetic task. 

Fundamental frequency f, contours and f, variability were analyzed for anger, sorrow, and 

fear by Williams and Stevens (1972). For fear, the f,contour departed greatly from neutral, 

while for anger the contour was generally higher throughout with one or two syllables 

characterized by large peaks. Hicks and Hollien (198 1a,b) found similar increases in f,. 

' Most early studies on speech under stress consider fundamental frequency, but use the term pitch. Since pitch is a 
perceptual quantity, our research here will focus on fundamental frequency. 

Simulated recordings consisted of data from actors simulating fear, anger, sorrow, and neutral emotions. 
Actual recordings consisted of data from the radio announcer during the Hindenburg disaster. 
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However, Hecker et al. (1968) observed conflicting results (some subjects increased, while 

others decreased so). 
Mean articulation rate in syllables/second was determined for the three emotions considered by 

Williams and Stevens (1972). Results from fastest to slowest were neutral, anger, fear, and 

sorrow. Hicks and Hollien (1 98 1a,b) also observed similar results. 

Speech intensity or vocal effort per unit time, during voiced sections was considered by Hicks 

and Hollien (1981a,b) and Hecker et al. (1968), although inconsistent results occurred across test 

phrases. Pisoni et al. (1985), Summers et al. (1988) investigated acoustic-phonetic correlates of 

speech produced in noise (also called the Lombard effect (Lombard, 1911)). With subjects 

speaking in quiet and 90 dB SPL white masking noise, results showed an increase in overall 

amplitude of vocalic sections, increased duration, increased average fo,and reduced spectral tilt. 

Junqua (1993,96) also performed analysis on Lombard effect speech and concluded that female 

speakers seem to be more intelligible than male speakers. Rostolland (1982a,b) performed 

acoustic and phonetic studies for shouted speech and observed reduced intelligibility with a 

raised f,contour. 

In other investigations, Lieberman and Michaels (1962) had subjects simulate eight emotional 

states. Their approach was to select a parameter as an emotion relayer, extract that parameter, 

and observe whether the resulting sound could correctly be identified as the simulated emotion 

by listener groups. While only characteristics of pitch and amplitude were considered, results 

showed that fear was highly identified using only amplitude information with constant pitch. 

2.3 Analysis Using Actual Stress or Emotion Situations 

A comparison of results from actual stressful recordings is somewhat difficult, due to varying 

parameters measured and levels of stress experienced. However, considering such studies are 

important, since the analysis may help verify experimental procedures and results from simulated 

studies. 
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Kuroda et al. (1976) analyzed tape recordings of pilots with varying mission experience in actual 

aircraft accidents. Their analysis consisted of finding a parameter related to pitch, termed the 

vibration space shift rate (VS SR) from speech spectrograms. Their ultimate conclusions showed 

as stress increased so did f,. A more recent study by Ruiz, et al. (1996) considered time and 

frequency-domain analysis of emergency aircraft cockpit recordings. 

Simonov and Frolov (1977) analyzed communications of cosmonauts at various flight stages. 

Analysis consisted of monitoring heart rate and the spectral centroid of the first vocal tract 

formant. Though general trends were noted, their summary emphasized the need of further 

research. 

Streeter et al. (1983) carried out a more complete analysis of a telephone conversation between a 

system operator (SO) and his superior chief (CSO) prior to the 1977 New York City blackout. 

Analysis consisted of pitch, amplitude, and timing measurements. An attractive feature of the 

data was the increased situational stress throughout the hour-long conversation. Results were 

somewhat conflicting since it appeared SO was passing decision making authority to CSO during 

the emergency. Results showed that listeners referred to a vocal stress stereotype, which 

includes: elevated pitch and amplitude, and increased variance in these vocal cues. 

Finally, Williams and Stevens (1972) pcrformed analysis of the recorded radio announcer during 

the Hindenburg disaster. In an effort to justify results from their simulated emotions, they had 

actors recreate the announcer's message. Results were not entirely consistent, though increased 

average f, along with tremor were observed for both, with larger variations for the actor. This 

would indicate that the actor's emotions to a certain extent were overemphasized. This, as well 

as other previous studies on speech under stress are summarized in Table 1. 

2.4 Voice Stress Analysis for Law Enforcement 


Most of the studics discussed in Section 2.2 and 2.3, and summarized in Table 1, deal with 


speech produced in either emotional or task induced stressful environments. There is another 


area of analysis of speech under stress, which deals with voice tremor and how it applies to 

detection of deception for law enforcement applications. The study by Cestaro (1995) was an 
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extensive evaluation of the commercial Computer Voice Stress Analyzer (CVSA). In that study, 

two experiments were designed to validate the underlying theory of CVSA, and second to 

examine the accuracy of CVSA with traditional polygraph instrument for the problem of stress 

detection due to deception. He simulated the CVSA signals electronically using signal 

generators in order to have careful control over what commercial have been made for CVSA. 

His findings show that CVSA was less successful and accurate than a polygraph (38% versus 

62%). His results suggest that there may be a systematic and predictable relationship between 

voice patterns and the stress related to deception. 

Another study by VanDercar, et. al, (1980) detailed an evaluation of the psychological stress 

evaluator (PSE) as a commercial system for representing different levels of speaker stress. They 

measured PSE profiles in addition to heart rate and State Trait Anxiety Inventory (STAI) scores 

during relaxed and high stress (through the threat of electric shock). When the potential for 

stress was high, PSE, STAI, and heart rate measures all reflected different levels of stress and 

were significantly correlated with each other. A second study with reduced stress levels failed to 

show the reliability of PSE. It was suggested that the lower levels of stress were a factor in the 

difference in performance for the second experiment. In later sections, we consider a computer 

implementation of the stress classification feature within the CVSA instrument. Evaluations are 

performed for SUSAS and Mt. Carmel stressed speech recordings (this data will be discussed 

later). 

1 1  
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Table 1: A summary of studies on speech under simulated and actual stress conditions. 

Summary of Speech Under Stress Studies-
Simulated Stress 

,ieberman & Michaels (1962) 

3ecker, Stevens, et al(1968) 

Xicks & Hollien (1981) 

kostolland [1982) 

Pisoni, et al. (1 985)  

Stanton, et al(1988) 

lunqua (1993) 

Actual Stress 
Kuroda, et al. (1976) 

Simonov & Frolov (1 977) 

Streeter, et al. (1983) 

Simulated & Actual 
Williams & Stevens (1972) 

Hansen (1988) 

Speech Analysis Areas 
'itch & Amplitude 

Listener Assessment) 

\.lean Pitch 

speech Level 

SpectogramComparison 

\.lean Pitch 

\.lean Intensity 

Speech Rate 

4coustic Analysis 


'itch 

3uration 

3eneral Spectral 

Pitch 

Duration 

Frequency Characteristics 

Pitch 

Duration 

Frequency Analysis 


Speech Analysis Areas 
Pitch (VSSR) 

First Formant Analysis 

Heart Rate 


Pitch 

Speech Level 

Timing Measurements 


Speech Analysis Areas 
Pitch Contours 
Pitch Variability 
Spectrogram Comparison 
Avg. Spectral Content 
Mean Articulation Rate 

Pitch 

Glottal Source 

Duration 

Intensity 

Vocal Tract Spcctrum 

(+200 Speech Features) 
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StresslEmotion 
SimulatedStress: 

SimulatedEmotion 

SimulatedStress: 

Timed Arithmetic Task 


Simulated Stress: 

Mild Electric Shock 


Simulated Stress: 

Shouted Speech 

Simulated Stress: 

Lombard Effect 


Simulated Stress: 

Loud and Lombard Effect 


Simulated Stress: 

Lombard Effect 


StresslEmotion 
Actual Stress: 

14 Pilot Emergency Cockpit 

Recordings (8FaGl) 

Actual Stress: 

Cosmonaut Flight 

Recording Analysis 

Actual Stress: 

Telephone Call Analysis of Con.Ed. 

New-York City Baciout f 1977) 


StresslEmotion 
Simulated Stress: 
Method Actors: 
Fear, Anger, Sorrow 
Simulated Hindenburg 
Announcer 

Actual Stress: 
Hindenburg Announcer 
Simulated Stress: 
Fast. Slow. Loud., Soft, 
Clear, Angry, Question, 
Lombard Effect, Computer 
Response Task Stress 

Actual Stress: 
Roller-Coaster Ride Speech, 
Psychiatric Emotional 
Analysis 
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3 AcoustidPhonetic Analysis of Speech under Stress 

In order to perform an in depth study, a comprehensive speech under stress database, entitled 

SUSAS (Speech Under Simulated and Actual Stress) was formulated (Hansen, 1988; Hansen and 

Bou-Ghazale, 1997). The database is partitioned into five domains, encompassing a wide variety 

of stresses and emotions. A total of 32 speakers (1 3 female, 19 male, with ages ranging from 22 

to 76 were employed to generate in excess of 16,000 utterances. Table 2 illustrates the various 

domains present in the database. The vocabulary consists of 35 aircraft communication words 

containing a number of subsets that are difficult for recognition systems. 

Table 2: The SUSAS Speech under Simulated and Actual Stress Database. 

Domain Type of Stress or Emotion Speakers County Vocabulary 

Simulated Stress 9 Speakers 8820 35 Aircraft 

Slow soft (All Male) Communication 

Fast Loud Words 

Angry Clear 

Question 


Single Calibratcd Workload 9 Speakers 1890 35 Aircraft 
Tracking Tracking Task: (All Male) Communication 

Task Moderate & High Stress Words 
Lombard Effect 

Dual I Acauisition & Comoensatorv I 8 SDeakers I 4320 I 35 Aircraft 
Tracking Tracking Task: (4'Male) Communication 

Task Moderate & High Stress (4 Female) Words 
Actual Amusement Park Roller-Coaster 9Speakers 500 35 Aircraft 
Speech Helicopeter Cockpit Recordings (4 male, 3 Female) Communication 
Under (G-Force, Lombard Effect, Noise, Fear, (2 Male) Words 
Stress Anxiety) 

Psychiatric Patient Interfiews: 8 Speakers 600 Conversational 
Analysis (Depression, Fear, (6 Female) Speech:Phrases

Anxiety, Angry) (2 Male) & Sentences 

3.1 AnalysisOverview of Speech Under Stress 

In this section, we summarize the analysis conducted on speech from (i) Simulated stress or 

emotion, and Simulated workload tusk or Lombard effect}, followed by (ii) probe studies using 

Actual speech under stress. In this context, simulated conditions refer to areas where talkers 

were asked to either speak in a prescribed emotional manner, or perform some computer 

response task while uttering speech. For these domains, control of experimental conditions and 
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environmental factors were possible (e.g., vocabulary, task difficulty). Actual conditions refer to 

areas where talkers are in environments similar to real stressful situations. These domains differ 

fiom simulated conditions in their lack of control in experimental and environmental factors 

(e.g., varying noise levels, task difficulty, vocabulary choice). 

To our knowledge, there is no singly reliable acoustic indicator of psychological stress. There 

has been a lack of consistent results in past research efforts. After considering experimental 

design and analysis, it is apparent that past approaches to stress analysis suffer fiom one to five 

of problems summarized as follows; (i) analysis based on too few speakers, (ii) analysis based on 

too few utterances, (iii) analysis based on a limited set of parameters with no consideration 

within speech sound classcs, (iv) no statistical analysis to determine if changes are statistically 

significant, (v) no confirmation of simulated results with those from actual recordings. Here, we 

address these problems in the context of fundamental frequency, duration, and intensity, glottal 

source, and spectral factors. The analysis included extensive parametric and non-parametric 

statistical tests (see Hansen, 1998a, 1998b). 

3.2 Analysis of Fundamental Frequency 

The first area considered for stress evaluation involves characteristics of fundamental frequency 

f,,including contours, mean, variability, and distribution. 

A subjective evaluation of more than 400 focontours was conducted across all stress conditions 

(sample contours4 are shown in Fig. 1). The overall shape of the contours for fast and slow 

speech did not change appreciably. Angry and loud contours had much higher variability than 

neutral, with angry the highest mean and variability of all stress conditions considered. fo 
contours of soft speech were almost always smoother than neutral. Speech under Lombard effect 

had a slight elevated mean, but the contours appeared similar in shape. Contours for moderate 

and high workload task conditions were similar to neutral. 

Here, the f, contours for the word "histogram" are shown continuous, because the timing of the unvoiced 
obstruent /s/ varies during production across the stress styles, so endpoints of the contours are joined in this 
example, and all statistical analysis was performed directly on frame based findmental frequency values. 

14 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



Figure 1: Distribution of fundamental frequency based on fundamental frequency estimates from neutral, 

angry, fast, slow, loud, soft, clear, Lombard effect, moderate (50%), and high (70%( workload condition 


speaking styles. 


Next, we consider differences in mean, variance, and distribution of pitch (f,).Since a number 


of statistical tests performed assume sample variables to be Gaussian distributed, a comparison 


of f, distribution contours was performed (see Fig.1). We are primarily interested in seeing 

whether the distribution shape differs substantially from Gaussian. f, distributions for neutral, 

clear, slow and fast have similar shapes with a bimodal concentration. Negative kurtosis values 

(from Table ) confirm distributions which are more flat as compared to Gaussian. Lombard and 

loud f, distributions had similar shape, along with values of skewness and kurtosis, though the 

range of loud f ,  was wider. The soft fodistribution was highly concentrated with a very small 

variance, which was confirmed by a large positive kurtosis value suggesting a peaked 

distribution. Of the f, distributions considered, loud and angry styles were judged not to be 

Gaussian. Angry resulted in a very irregular shaped distribution, with large concentrations 

towards higher frequencies. 

Finally, below we summarize some of the key findings for analysis of pitch mean and variance, 

based on speech data from the SUSAS database. 
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Summary of Key Results: Mean Fundamental Frequency vs. Stress 
e The position of mean fofrom highest to lowest versus speaking style is shown below. 

Fundamental Freq. Condition Shiftinmean f, 

e Mean f,values 

Highest Awry
Loud 
Lombard 
Clear 
Fast 

+?3% stat. Significant 
+48% stat. Significant 
+IO% stat. Significant 
+4% stat. Significant 
+6% stat. Significant 

Neutral 
Slow -2% 
Task Condition 70% -2% 
Task Condition 50% -3% 

Lowest Soft -5% stat. significant 
may be used as significant indicators for speech in soft, fast, clear, Lombard, 

angry, or loud styles when compared to neutral conditions. 
e 	 Loud, angry,and Lombard mean f ,  are all significantly different from all other styles 

considered. 
e Mean fo was not a significant indicator for moderate versus high task workload conditions. 

e 	 Speech under Lombard effect gave mean f,values most closely associated with f o  from 
fast and clear conditions. 

e 	 Changes in mean f,,based on Student's t-tests, appears to be a consistent and reliable stress 
indicator over a wide variety of conditions. 

Summary of Kev Results: Variance of Fundamental Frequency vs. Stress 
e The position of f o  variability from highest to lowest versus speaking style is shown below. 

Pitch Condition Shift in Standard Deviation 
Highest Angry

Loud 
Lombard 

+506% stat. significant 
+2 13% stat. significant 
+55% stat. significant 

Clear +59% stat. significant 
Slow +19% stat. significant 
Fast +2% 
Task Condition 50% +3% 
Task Condition 70% +2% 
Neutral 

Lowest Soft 28% stat. significant 
e Variance of fovalues may be used as significant stress indicators for speech in soft, loud, 

angry, clear, or Lombard styles when compared to neutral conditions. 
e Soft and loud fovariance are significantly different from all styles considered. 
e 	 Pitch variance was not significantly different for moderate versus high task workload 

conditions. 
e Pitch variance was unreliable for slow and fast stress conditions. 
e 	 Pitch variance for clear and Lombard conditions are similar, but different from all other 

styles considered. 
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3.3 Analysis of Duration 

In order to address duration in speech under stress adequately, analysis was partitioned into 

stress relayers across four areas. The first two focused on overall word and individual speech 

class (vowel, consonant, semivowel, and diphthong) durations. Third, analysis within speech 

classes provided detailed indicators of duration shifts between classes. Fourth, because overall 

word duration may supersede the requirements of lengthening consonantal periods (or 

semivowel, diphthong periods), several duration ratio measures are proposed. 

Several comments concerning durational effects caused by prosodic features may help explain 

the durational variation caused by stress. There have been a multitude of studies investigating 

durational variations which arise from prosodic conditions (Fry, 1955; Creelman, 1962; House, 

1962; Perkell and Klatt, 1986). A number of more recent studies have considered timing and 

height of pitch contours for female speakers (van Santen and Hirschberg, 1994), phone/syllable 

duration and timing representations for text-to-speech synthesis (van Santen, 1995), pitch and 

duration in signaling emotion (Ofuka, Campbell, et al., 1994), and segment duration in hidden 

Markov model speech recognition (Levinson, 1986; Wang, et al. 1996). Basic data and initial 

prosodic rules, which govern consonant and vowel duration, can be found in studies by Klatt 

(1973,76), Fry (1955), House (1962), and Umeda (1975,77). Duration patterns have also been 

studied in an attempt to arrive at principles of motor organization by Lindblom (1963), 

Lindblom, Lyberg, and Holmgren (1977), and Kohler (1986). Barnwell (1971) was the first to 

identify a limit to the temporal compressibility of vowels when they are followed by an unvoiced 

consonant and/or by an additional syllable. In a later study, Klatt (1973) expressed this 

incompressibility in a formula, and applied it as a rule to adjust consonant durations for various 

shortening effects (Klatt, 1976). 

Below, we summarize results from the statistical evaluation of mean and variance of word and 

phoneme class duration. 
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Summary of Key Results: Mean Duration vs. Stress 
0 Mean duration from highest to lowest versus talking style for all speech classes (* = 

significant with respect to neutral) 
Shift in Mean Duration 

Word Vowel Consonant Semivowel Diphthong 
SL +73% SL* +84% C* +84% SL* +112% SL* +94% 
C* +39% A* +69% SL* +52% LM* +63% A* +64% 
A* +38% L* +58% SO +24% A +42% L* +53% 
L* +36% C +26% C7 +22% c +39% LM +30% 
LM* +20% LM +24% C5 +12% L +27% SO +9% 
so +7% N LM +4% c 5  +20% c +4vo 
c7 +5% 
c5 +1% 

so
c5 

-8% 
-8% 

L +3% 
N 

so +19% 
c7 +14% 

N 
C7 -7% 

N c7 -8% A -12% N C5 -8% 
F* -26% F* -28% F* -27% F -27% F -27% 
0 	 Mean word duration values may be used as significant indicators for speech in slow, clear, 

angry,loud, Lombard, or fast styles when compared to neutral conditions 
0 	 Slow and fast mean word duration are all significantly different from all other styles 

considered 
0 Clear mean consonant duration was significantly different from all styles except slow 
0 	 Word and phoneme class duration are not significant indicators for moderate vs. high task 

workload conditions 

Summary of Key Results: Duration Variance vs. Stress 
0 Duration variance from highest to lowest versus speaking (* = significant with respect to 

neutral) 

Word 
SL* +173% 
A* +l28% 
C* +122% 
L +56% 
LM +32% 
N 
so -1  1% 
c 5  -1 1 
c 7  -22% 
F -33% 

Vowel 
A* +191% 
SL* +166% 
L* +141% 
C* +115% 
LM +65% 
N 
c5 -4% 
c7 -4% 
so -22% 
F* -54% 

Shift in Duration Variance 
Consonant Semivowel 

C* +456% A* +1045% 
SL* +294% SL* +942% 
L* +106% LM* +531% 
A* +83% C* +370% 
c 7 *  +78% L* +326% 
so* +63% C5 +150% 
LM +44% C7 +106% 
c5 +39% so +91% 
N F +45% 
F* -39% N 
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Diphthong 
SL* +324% 
A +112% 
L +70% 
LM +6% 
c 7  +3% 
C +1% 
N 
c 5  -27% 
SO -66% 
F -70% 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



Duration variance increased for slow speech in all domains (word, vowel, consonant, 
semivowel, diphthong 
Duration variance decreased for most domains under fast stress condition 
Duration variance significantly increased for angry speech 
Duration variance generally increased for loud speech, but was mixed for soft speech 
Clear consonant duration variance was significantly different from all styles 
Duration variance is not a significant indicator for moderate versus high task workload 
conditions 

Since overall word duration may supersede requirements for lengthening of consonants (or other 

speech classes), several duration ratio measures were proposed. The following three5 ratios were 

considered; i) a consonant versus vowel duration ratio (CVDR), ii) a consonant versus 

semivowel duration ratio (CSVDR), and iii) a vowel versus semivowel duration ratio (VSVDR), 

where duration values d c,L,,,,F (stress) are for a particular phoneme class and stress condition. It 

is suggested that such ratios can be used to determine directions in which speakers vary their 

duration patterns under stress. By using neutral ratios as baseline values for comparison, one can 

determine how phone class duration varies for individual stress styles. 

’Duration ratios with respect to dipthongs were not considered, due to the limited number of examples available in 
the Talking Styles stress domain. 
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CVDR and CSVDR suggest that there is a shift in percentage time spent in vowels and 

semivowels towards consonants for soft, clear, and to a lesser degree the two task conditions. 

CVDR and VSVDR also revealed increased vowel duration at the expense of consonant and 

semivowel portions for angry and loud speech. It is difficult to get a clear picture of the global 

changes in duration from simply comparing the duration ratios. Therefore, a pictorial 

representation of global duration shifts is presented in Fig.2. A bar graph, proportional to 

average word length from the SUSAS database is shown for each stress condition. The 

percentage of vowel, semivowel, and consonant duration with respect to an overall average word 

duration is also shown within each shaded section. The percentage is simply the ratio of average 

phoneme class duration to that of an avcrage word duration assuming one vowel, consonant, and 

semivowel. All calculations are based on tabulated values. As an example, the 24% consonant 

duration for neutral was obtained by assuming an ideal stressed word with one phoneme from 

each class as follows, 

word = vowel+ semivowel + consonant (4) 

295 = 165 + 59 + 71 (in msec.). ( 6 )  

The consonant percentage is simply the ratio of the average consonant to ideal word duration. 

71 
24% = -xlOO (8)285 

The arrows in Fig.2 indicate significant shifts in duration based on CVDR, CSVDR, and 

VSVDR. As an example, angry speech results in significant increases in vowel duration at the 

expense of semivowel and consonant duration. It is apparent from the results presented here the 

presence of stress influences overall and individual duration characteristics. 
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3.4 Analysis of Intensity 

The control of vocal intensity is based on adjustments of laryngeal and subglottal variables. In 

addition, past research on the effects of intensity for speech intelligibility has also served to 

improve the knowledge of how speakers vary intensity in typical speech production. An analysis 

of consonant strength and precision was performed by House, et a1.(1965). In this investigation, 

consonant-vowel amplitude ratios (CVAR) were measured for two speakers differing in 

intelligibility as measured by the Modified Rhyme Test. It was found that the more intelligible 

speaker had CVARs 2-4 dB higher than the less intelligible speaker. Hecker (1974) attempted 

to increase speaker intelligibility by increasing the CVAR. This was accomplished by splicing 

out the consonant, increasing its amplitude, and re-splicing it into the word. After processing, 

intelligibility based on the Modified Rhyme Test showed an increase from 78% to 8 1% at 4dB of 

signal-to-noise ratio, a small but significant increase. A number of studies have also considered 

changes in vocal effort (Perkell and Klatt, 1986) and presence of the Lombard effect (Hanley and 

Harvey, 1965; Pearsons, et al., 1977; Junqua, 1993,96). 

Below, we summarize the primary findings from analysis of mean and variance in word and 

phoneme class intensity for various speech styles under stress. 

Summary of Key Results: Mean Intensitv vs. Stress 

Mean RMS intensity from highest to lowest versus speaking style for all speech classes (* = 

significant with respect to neutral) 

Shift of Mean RMS Intensity 
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GLOBAL SHIFTS IN DURATION 


NEUTRAL 

SLOW 

FAST 

SOFT 

LOUD 

ANGRY 

CLEAR 

CON0-!% 

COND-70 

LOMBARD 

VOWEL SEMIVOWEL CONSONANT 
L I  L I  

d,,%d,,, dsv%dw d,O/od, 

470 MSEC 

827 USEC 

353 MSEC 

509 MSEC 

-
650 MSEC 

662 MSEC 

666 MSEC 

7 

482 MSEC 

501 MSEC 

4--


572 MSEC 

Figure 2: A pictorial representation of global duration shifts for speech under stress. The length of each bar  
graph is proportional to each style's average duration. Speech class percentages shown for each style are  

based on an ideal word containing one phoneme from each class. Arrows indicate significant shifts in 
duration bascd on phoneme ratios as a result of stress. 
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Mean RMS word intensity values may be used as significant indicators for speech in angry, 
loud, and high workload task styles when compared to neutral conditions 
Loud and angry mean RMS word intensity are significantly different from all other styles 
considered 
Loud and angry mean RMS vowel and diphthong intensities are significantly different from 
all styles considered 
Mean RMS consonant and semivowel intensity are not significant stress indicators for any 
style considered 
Mean RMS intensity is not a significant indicator for moderate versus high task workload 
conditions 

Sunimarv of Key Results: Intensity Variance vs. Stress 
RMS intensity variance from highest to lowest versus stress style 
(* = significant with respect to neutral) 

Shift in  the Variance of RMS Intensitv 

J 

SL -31% LM -14% LM +lo% SL -17% L -55% 
c7 -33% SL -18% N so -20% SL -62% 
C -47% so -32% F -8% C -41% LM -78% 

Variance of RMS word intensity may be used as a significant indicator for speech in angry 
and loud styles when compared to neutral 
Variance of loud and angry RMS word intensity is significantly different from most other 
styles considered 
Variance of angry RMS vowel and semivowel intensities were significantly different from 
most styles considered 
Variance of RMS consonant and diphthong intensity were not significant stress indicators for 
most styles 
Variance of RMS intensity (for word or phoneme class) was not a significant indicator for 
moderate versus high workload task conditions 

Next, it may be beneficial to reflect on the intensity variation between individual phoneme 

classes. Consider the case when a talker is speaking under fast or Lombard effect in noisy 

environmental conditions. A talker could maintain overall word intensity, yet vary a particular 

phoneme class with respect to another. Hence, several average RMS ratio measures were 
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formed. Three ratios were considered: i) consonant versus vowel amplitude ratio (CVAR), ii) 

consonant versus semivowel amplitude ratio (CSVAR), and iii) vowel versus semivowel 

amplitude ratio (VSVAR). These ratios are used to determine in which directions speakers vary 

their intensity patterns under stress. 

CVARs for fast, slow, and Lombard effect conditions were relatively constant. Increased 

CVARs resulted for soft and both task conditions, which suggest talkers emphasize consonant 

amplitude with respect to vowel amplitude under these stress conditions. Decreases in CVAR's 

for loud, angry, and clear styles signify further importance in vowel rather than consonant 

amplitudes. CSVARs also demonstrate a talker's emphasis of consonant versus semivowel 

amplitudes for soft, Lombard, and both task conditions. Decreased CSVAR was noted for only 

loud and angry styles. Finally, VSVAR generally result in further vowel emphasis. Only the soft 

speaking style results in decreased VSVAR, with loud having the highest. In order to get an 

overall perspective of changes in intensity across the various styles, a pictorial representation is 

shown in Fig.3. The clear bar graphs are proportional to RMS word intensity for each style. 

Shaded regions within each bar graph indicate average RMS intensity values for vowel, 

semivowel, and consonant phoneme classes6. Triangles below each bar graph indicate 

statistically significant shifts in phoneme class intensity. A single arrow indicates a strong shift 

in average Rh4S intensity from one class to the other. A double arrow indicates an extreme shift 

in RMS intensity (from weaker to stronger). Phoneme class shifts indicate opposite movement 

for soft and loud speech classes. For loud speech, vowel amplitudes are strongly emphasized, 

while in soft speech consonant amplitudes are emphasized. Fast speech had little or no 

movement between phoneme classes. 

Phone class heights have all been scaled by a factor of 213 so word FWS intensities are visible in the presentation. 
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Figure 3: A pictorial representation of global intensity and shifts in intensity for speech under stress. The 
height of each bar graph is proportional to each style's average RMS word intensity. Speech class RMS 

values are also shown. Arrows indicate significant shifts in intensity as a result of stress. 

25 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



3.5 Glottal Source Spectral Analysis 


In this section, we focus on glottal source effects. There are a variety of characteristics relating to 


speech excitation which are adjusted to convey the stress or emotional state of a speaker. We 


have seen that the fundamental frequency of vocal fold movement is a statistically reliable 


indicator of many stressful speaking conditions. In addition to rate, aspects such as duration of 


each laryngeal pulse (both open and closed glottal periods), the instant of glottal closure, or the 


shape of each pulse play important roles in a talker's ability to vary source characteristics. 


An analysis of glottal source spectral characteristics was performed for SUSAS speech data. 


Utterances rich in vowel content but lacking adjacent nasal portions were chosen. An algorithm 


was developed for analysis of the distribution of frame energy for each stress condition. The 


division between voiced (high frame energy) and unvoiced (low frame energy) speech is quite 


apparent in all cases. These frame energy distributions can also serve as possible stress 


indicators. For example, high energy frame concentration increased for angry, loud, and 


Lombard conditions. However, low energy frame concentration increased for clear, slow and 


soft conditions. A shift was also observed for frames with moderate energy (40 to 60 dB) toward 


primarily higher regions. This was observed for loud and angry styles, thus indicating that under 


these conditions, the time duration spent during transitional periods between voiced and 


unvoiced portions is reduced. A voiced energy cutoff was selected from corresponding frame 


energy distributions close to the upper peak in the frame distributions (i.e., normally between 65 


to 70 dB). Frames above the threshold are extracted and a gain normalized periodogram spectral 


estimate found for each frame. Periodogranis from all selected frames are averaged to remove 


the effects of the varying vocal-tract response. This leaves an estimate of the glottal source 


spectrum. Each selected frame's energy is also averaged to obtain a final gain factor for the 


glottal spectrum. This was performed for each of the ten stress conditions. 
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Figure 4: Glottal source spectral estimates based on non-nasalized utterances for neutral, loud, soft, fast, 
slow, moderate (CondSO\o/) and high (Cond70\%) computer workload conditions, angry, clear, and 

Lombard effect stress talking styles. (Note: A +6dB/octave spectral roll-off should be added to remove the 
effects of the lip radiation component.) 
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3.6 
 Analysis of Vocal Tract Articulatory Characteristics 

It is reasonable to hypothesize that stress factors will also affect the position and rate of change 

of the articulators, which shape the vocal-tract. It has been suggested that these changes may 

represent a major contributor to the reduced performance of present-day recognition algorithms 

in stressful environments (Hansen, 1988, 1996). Therefore, we consider an initial analysis of 

vocal tract structure based on sample articulatory profiles. Previous articulatory studies have 

considered methods to estimate vocal tract configuration based on the acoustic signal 

(Kobayashi, Yagyu, Shirai, 1991; Wakita, 1973). The analysis here is based upon a linear 

acoustic tube model with speech sampled at 8 kHz. In order visualize the effects of stress on 

physical vocal tract shape, the inoveineiits throughout the vocal tract can be displayed by 

superimposing a time sequence of estimated vocal tract shapes for a chosen phoneme. The vocal 

tract shape analysis algorithm assumes a known normalized area function and acoustic tube 

length. The algorithm begins by computing the sagittal distance function by assuming a 

cylindrical vocal tract. Next, a set of rigid points from the glottis to the upper teeth (and rigid 

upper lip) models the hard palate. With the hard palate model in place, the soft palate and 

pharynx are approximated by forming a dependence upon the sagittal distance function. Finally, 

the lower lips are modeled using one of four rigid models dependent upon the acoustic tube 

length. 

An analysis of articulatory changes in vocal tract shape under neutral and various stress 

conditions was performed for extracted phoneme sequences from SUSAS. Fig.5 illustrates a set 

of vocal tract shapes which are superimposed for each frame in the analysis window (the number 

of extracted frames are summarized for each stress condition). For Neutral, there is some 

movement of the articulators in the pharynx and oral cavities (as there should be for the 

production of the /r-iy/ phone sequence in "freeze"). There is also limited movement for the Soft 

speaking condition. However, for Angry, Loud, and Lombard conditions, there is significant 

perturbation in the blade and dorsum of the tongue and the lips. This extreme vocal tract 

variation is also present in the same phone sequence from the Actual stress domain (speech from 

roller-coaster rides). This suggests that when a speaker is under stress, typical vocal tract 

movement is effected, suggesting a quantifiable perturbation in articulator position. This 
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characteristic was used as one of several features for a study on stressed speech classification by 

Womack and Hansen (1 996). 

26 FMS 40 F u v u  

Figure 5: Sample vocal tract articulatory profiles for the phoneme sequence M y /  from the wordfreeze across 
SUSAS speech under stress conditions. Each speech frame analysis width was 24ms,with a skip rate of 8ms. 

The number of frames indicate the /r-iy/ duration over which the profiles are plotted (e.g., 39 frames x/ 
8ms/frame = 312ms). 

3.7 Vocal Tract Spectrographic Analysis 

Our initial analysis of vocal tract spectral structure focuses on sample spectrographic analysis of 

speech under stress. Several hundred spectrograms were informally compared across stress 

conditions in SUSAS. Fig.6 illustrates example responses for the word help spoken under stress 

conditions. Final stop releases were in general not present in high stress styles such as Angry, 

29 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



Loud, and most Actual stress examples. Stop release time was normally longer for Clear and at 

times Lombard effect conditions. For Angry, Loud, and Lombard stress conditions, the high 

frequency energy generally increases with more irregular formant structure. Formants are also 

higher in amplitude and more clearly defined. This was partially confirmed in the previous 

analysis on the glottal source spectrum. 

The spectral characteristics illustrated in spectrographic analysis suggest that the presence of 

stress based information can be obtained from a statistical analysis of formant location and 

bandwidth. A more complete discussion of the statistical analysis of individual phonemes across 

formant location and bandwidth can be found in Hansen, 1998b. 

Figure 6: Spectral Responses under Stress Caption Sample vocal tract spectral responses from help 
utterances in the SUSAS speech under stress database. 

30 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



4 Stress Classification 

The field of computer based voice stress detection is an emerging area. There has been some 

activity in commercial voice stress analysis in applications for forensic science (Cestaro, 1995). 

These methods are typically based on some aspects of pitch perturbation or micro-tremors 

(Lippoid, 1971). However, these commercial systems are not universally accepted by speech 

scientists because the 'stress' in these cases is normally associated with deception. 

The focus here is exclusively on stress based speech production variations resulting from task 

workload, Lombard effect, or emotional/psychological changes. Recently, a number of studies 

have been reported which focus directly on the formulation of computer based stress detection. 

Several methods have been proposed based on neural network classifiers. For example, Hansen 

and Womack (1996) considered a neural network based stress classifier using five different 

cepstral feature sets. Features that were found to be the most useful were the auto-correlation 

Me1 AC,and cross-correlation Me1 xC, ,,,(XC-Mel) cepstral parameters. Further classification 

studies have expanded on these neural network approaches using target driven features (Womack 

and Hansen, 1996). In that method, a wide selection of features were automatically extracted 

including articulatory measures, pitch, phone duration, and a variety of spectral based 

information. Next, the most effective feature subset for each targeted stress condition was 

determined during training, and only those targeted features used during classification. This 

allows the classifier to use the most discriminating features for classification of each stress style. 

Other methods have also been proposed based on the nonlinear Teager Energy Operator (TEO) 

(Cairns and Hansen, 1994a, 1994b), where the shape of a duration normalized energy profile was 

used in a hidden.Markov model based stress classifier. That study, clearly demonstrated the 

potential a TEO-based feature could have in improving stress classification performance. 

Motivated by this work, several recent investigations have considered more extensive feature 

processing methods based on TEO principles (Zhou, Hansen, Kaiser 1998a,b). 

In the following sections, we first consider stress classification experiments which use linear 

based speech features and optimum Bayesian detection theory. These experiments were 
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conducted on features such as duration, intensity, pitch, glottal source, and vocal tract spectrum, 

In a recent study, several TEO-based nonlinear features were found to be very effective for 

stress classification (Zhou, Hansen, Kaiser 1998). Therefore, in Section 4.3 one nonlinear based 

feature is described, with results presented for both classification and assessment of speaker 

stress. 

4.1 Bayesian Stress Classificationwith Linear Speech Features 

Having established relationships between speech production under stress and speech feature 

variation (Hansen 1998a,b), we now turn to the related problem of classification of speech under 

stress. Our task here is to formulate an algorithm for detection of speech spoken under one 

particular stress style versus neutral speech. It has been shown that there are observable 

differences in duration, intensity, pitch, glottal source information, and formant locations 

between neutral and stressed speech. Therefore, it is worthwhile to evaluate their performance 

for stress classification, or stress detection. Here the two terms, classification and detection, can 

be used interchangeably since only pairwise classification is considered. Two processing stages 

are required for stress detection. In the first stage, acoustical features are extracted from an input 

speech waveform. The second stage is focused on detection of stressed speech from neutral 

using one or more available methods. A variety of methods exist for stress detection which 

include, but not limit to, detection-theory based methods, methods based on distance measures, 

neural network classifiers, and statistical modeling based techniques. In this section, we employ 

two methods, one using a Bayesian hypothesis-testing framework, and the other using a distance 

measure to detect stressed versus neutral speech. 

4.1.I Description of Features 


For the five linear features used for stress classification, only vowel sections were extracted from 


the simulated domain of the SUSAS database for evaluation. The sample length of each vowel 


in msec is used as the duration feature. The intensity feature is defined as, 
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where s( i )  (i = l,..., K )  represents the K individual samples in the vowel. Pitch, glottal source 

information, and formant locations are extracted on a frame basis with frame length being 32 

msec and an overlap length between adjacent frames of 16 msec. The modified simple inverse 

filter tracking (MSIFT) algorithm (Arslan, 1996) is employed to extract pitch frequencies from 

vowel speech waveforms. Spectral slope was used as the glottal source feature. It is difficult to 

obtain the glottal spectral slope from the raw vowel speech waveform due to the coupling effect 

between the sub-glottal structure and forward portion of the vocal tract. To avoid this effect, 

only data obtained during closed vocal fold periods was used, which unfortunately limits the 

available data. Also, it is difficult to accurately locate the boundaries between vocal fold closing 

and opening periods. As an approximation, a frame based log average amplitude FFT was 

computed versus log frequency for each vowel section and used to determine boundaries. 

The fourth feature is the slope of the glottal source spectrum. A straight line is used to 

approximate excitation spectral envelope, and the linek slope is considered as the glottal spectral 

slope. Finally, for the last set of features, the first two formant locations are used, since these 

were shown shown to change measurably between neutral and stressed speech (Hansen 1998b). 

Here, the ESPS/xwaves function "formant" was employed to extract formant locations for all 

vowels in the SUSAS database (Entropic, 1993). 

4.1.2 Detection-theory Bayesian HypothesisTesting 


A flexible framework for stress detection can be easily established using detection theory. For 


such a scheme, there are two hypotheses termed H O  and H I .  Under HO ,the speech is neutral; 


while under HI ,the speech is stressed. Given an input speech feature vector, x, (x = xl,
...,xM;M 

is the vector length) the following two conditional probability densities (PDF) are estimated, 

p(xlH0)and p(xlH1). With these PDFs, the likelihood ratio, a ,is then defined as, 

The decision of whether the input speech is neutral or stressed is made by comparing the 

likelihood or log likelihood ratio with a pre-defined threshold, p . If it is bigger thanp ,the input 
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speech is labeled as stressed; otherwise it is classified as neutral. The value of p depends on 

what criterion is used for detection. In a stress classification system, a criterion should be 

selected so that the two important probabilities, the false acceptance rate (FAR) and the false 

rejection rate (FRR), should be as low as possible. Obviously, it is not possible to minimize both 

FAR and FRR, and hence, a compromise must be made between FA and FR. For some systems, 

the requirement for one probability is more important than the other. For a stress classification 

system, however, we are only interested in the overall accuracy and have no preference for either 

FAR or FRR. Therefore, the value of p corresponding to equal error (FAR=FRR) rate (EER) is 

selected. In the experiments performed here, the values of FAR and FRR were calculated as the 

ratio of the number of falsely accepted vowels to the total number of vowels, and the ratio of the 

number falsely rejected vowels to the total number of vowels, respectively. By changing the 

threshold value, the value of p corresponding to EER can be found. 

In order to form the likelihood ratio in Eq.10, we must first estimate the PDFs 

(p(xIHO)andp(xlHl)) of both the neutral and stressed speech features. If we assume that all 

components b,,x2,..., xM)of the feature vector x are independent and identically distributed 

Gaussian random variables with mean, p,,,and variance, 0,”,under neutral conditions, but with 

a different mean, ,uYand variance otunder stressed conditions, then the individual feature 

component PDFs conditioned on neutral (H0)or stressed (HI)speech is as follows, 

(12) 

With these PDFs and assuming statistical independence, the overall conditional probabilities 

p(xlH0)and p(xlH1)can be computed as, 
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Substituting Eq.13 and 14 into Eq. 10, the likelihood ratio can be computed as, 

Taking the logorithm of each side, the log likelihood ratio is obtained as follows, 

where ji and c2and are the estimated mean and variance of the input sample feature vector, X ,  

which are defined as, 
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Similarly, if we assume that all feature vector components &,,x2,- . . ,xM)are independent and 

identically distributed from a Gamma distribution, r(a, p)with a = a, and P =P,,under neutral 

conditions, but with u = a, and p = p ,  under stressed conditions, the PDFs are formed as, 

The conditional probabilities are then obtained as, 

Substituting Eq.21 and 22 into Eq. 10 we obtain the likelihood ratio, a ,  and the log likelihood 

ratio, 1n2,for the case where sample features are Gamma distributed hi> 0,i = 1,2...,M), as 

follows, 

P(XlH1)
l=pO 
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where ji is the estimated mean of the input sample vector, x, as defined by Eq. 17, and filnis 

defined as, 

The decision of whether the input speech is neutral or stressed is made by comparing the 

likelihood (Eq. 15 for Gaussian distributed features or 23 for Gamma distributed features) or log 

likelihood ratio (Eq. 16 or 24) with a pre-defined threshold, p . If it is bigger than p, the input 

speech is labeled as stressed; otherwise it is classified as neutral. The value of pdepends on 

what criterion is used for detection. In a stress classification system, a criterion should be 

selected so that the two important probabilities, the false acceptance rate (FAR) and the false 

rejection rate (FRR), should be as low as possible. Obviously, it is not possible to minimize both 

FAR and FRR, and hence, a comproniise must be made between FA and FR. For some systems, 

the requirement for one probability is more important than the other. For a stress classification 

system, however, we are only interested in the overall accuracy and have no preference for either 

FAR or FRR. Therefore, the value of p corresponding to equal error (FAR=FRR) rate (EER) is 

selected. In the experiments performed here, the values of FAR and FRR were calculated as the 

ratio of the number of falsely accepted vowels to the total number of vowels, and the ratio of the 

number falsely rejected vowels to the total number of vowels, respectively. By changing the 

threshold value, the value of p corresponding to EER can be found. 

4.1.3 Distance Measure Testing 

It is also possible to detect stressed speech from neutral using a distance measure with prior 

trained feature distributions. Given an input speech feature vector, (x=xi.x2, . . a ,  x ~ ) ; Mis the 

vector length, two values, the distance between x and the neutral speech feature distribution, d, , 

and the distance between x and the stressed speech feature distribution, d,  ,are computed as, 
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where p , , , c ~ , , p , , ~ ,are means and standard deviations for the neutral and stressed speech 

features, which are obtained from training data; ,iia n d 6  are the sampled estimated mean and 

standard deviation of the coinponeiits of the input vector, x, as defined in Eq.17 and 18 

respectively. This distance measure reflects how close the input test speech feature vector is to 

the feature distributions of neutral and stressed speech data. If d, is smaller than d3,,  the input 

vector x is labeled as neutral, otherwise, it is assigned as stressed. The distance scores can also 

be used to quantify the degree of stress content in the test data. 

4.2 Linear Feature Based Evaluations 

A 33 word vocabulary' under neutral, angry, loud, and Lombard effect speaking styles from the 

simulated domain of the SUSAS database was employed for evaluations. For each test token, all 

samples corresponding to vowels were extracted. Other voiced data such as diphthongs, liquids, 

glides, and nasals were not considered due to changing spectral structure from articulatory 

movement. It is believed that the muscle control needed for such articulatory movement would 

also be effected under stress. Vowels were selected to investigate vocal fold changes under 

stress and static vocal tract adjustments due to stress. From all identified vowels, duration, 

intensity, pitch, glottal spectral slope, and formant locations were extracted. For each feature, all 

extracted data was used to estimate the density function of the feature distribution, and then 

obtain the ROC (receive operation characteristic) curve for the Bayesian hypothesis-testing 

method. In order to achieve open-set performance in the test phase, the entire vowel data set was 

first divided for each feature into 10 equal-size groups. For each set of the 10 groups, one group 

is set aside and the remaining data (9 groups) used to obtain the EER threshold for Bayesian 

'For these evaluations, the two words "dcstination" and "histogram" were set aside because of the increased impact 
of lexical stress on polysyllable words. The remaining 33 word vocabulary consisting of 26 monosyllable words 
and 7 two-syllable words. 
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hypothesis-testing method, and the mean and variance for the distance measure approach. The 

final error rate is obtained by accumulating all error rates from 10 open-set tests. The next five 

subsections consider stress detection performance using the optimum Bayesian detection scheme 

for a feature in each speech production domain (duration, intensity, pitch, glottal source, vocal 

tract spectrum). 

4.2.1 Duration 

For the Bayesian hypothesis-testing method, PDFs of vowel duration were first estimated to form 

the likelihood ratio. Using phone segment label information, a vowel duration histogram was 

obtained, following by fitting a Gamma distribution to the data histogram (examples for the loud 

speaking style are shown in Fig. 7a. Based on this Gamma pdf, the ROC for open-set test 

performance was obtained for the Bayesian hypothesis-testing method. To find average test 

results, the data was dividcd for each feature into 10 equal size sets. For each of the 10 sets, we 

test with one set and train with the other 9 to calculate the average EER threshold for the 

Bayesian hypothesis testing approach, and the mean and variance of the feature distribution for 

the distance measure approach. Fig.8a shows the ROC of detecting speech under "loud" 

speaking style from neutral speech using duration. Table 3 lists the open-set test results by using 

the Bayesian hypothesis-testing method as well as using the distance measure approach. Several 

testing feature vector lengths (1, 5 ,  10) were used to obtain ROC curves and error rates. From 

the results in ROC and table, increasing the input vector length does not significantly improve 

the detection accuracy (especially for detection of Lombard effect versus neutral speech using 

the Bayesian hypothesis-testing method). Also, Table 3 shows that the distance measure 

approach produces slightly better Performance for Lombard effect and loud speech, but slightly 

lower results for angry speech when compared with the Bayesian hypothesis-testing method. In 

general, given the error rate levels for the three stress classes tested, vowel duration is not a 

strong feature for stress detection. 
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Table 3: Error Rate (percentage) of open-set Stress Detection Test using Duration as the feature. 

4.2.2 Intensity 


For each vowel, we use Eq. 9 to calculate its root mean square (RMS) intensity. From a plot of 


the histogram, it was determined that the Gaussian PDF would fit the intensity distribution well. 


From Eq. 9, it is clear that the intensity feature can never be negative while a Gaussian PDF 


ranges from -a tom.  To solve this conflict, a conditional PDF, &(X?O), is used to fit the 


intensity distribution. f ( & ~ > o )  is obtained as follows, 

where p and a2are the mean and variance. Fig. 7b shows how a conditional Gaussian PDF fits 

the intensity distribution for all vowels spoken under the loud stress condition. 

Based on the conditional Gaussian PDF, the Bayesian hypothesis-testing method was used to 

classify stressed speech from neutral. ROC curves for each stress condition were obtained 

(sample ROC is shown in Fig. 8. In a similar manner to that used for duration, the open-set test 

results for the Bayesian hypothesis-testing method and distance measure approach were obtained 

and summarized in Table 4. 
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Table 4: Error Rate (percentage) of Open-set Stress Detection Test Using Intensity as the Feature 

Vector I Error Rate: Stress Stvle of Test Soeech INTENSITY 

The ROC curves in Fig. 8 and open-set test results in Table 4 show that increasing input vector 


length does improve performance, especially for detecting angry and loud speech for the 


Bayesian hypothesis-testing method. As for the distance measure approach, increasing input 


vector length does not always improve performance. The open-set test results also show that 


both methods perform better for detection angry and loud speech than for detecting Lombard 


effect speech. 


4.2.3 Pitch 


Frame-based pitch measurements were extracted for the input neutral and stressed data, and the 


resulting histogram showed that a conditional Gaussian PDF was suitable for model distribution 


of this feature. Fig. 7c, Fig. 8c, and Table 5 show the pitch distribution, ROC curves for the 


Bayesian hypothesis-testing method, and open-set test results for both methods, respectively. 


Note that all zero pitch values are removed from ROC plots and open-set tests. 


Table 5: Error Rate (percentage) of Open-set Stress Detection Test Using Pitch as the Feature 

Compared to duration and intensity, pitch resulted in much better performance for stress 

detection. In a similar manner to intensity, pitch performs better for detection of angry and loud 

speech than for Lombard effect speech when using the Bayesian hypothesis-testing method. For 

detection of loud versus neutral speech, the Bayesian hypothesis-testing method achieves very 
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high accuracy. The distance measure method produced a similar level of performance with pitch 

as the feature. 

4.2.4 Glottal Source Spectrum 

For estimation of the glottal source spectral slope, only those vowels which were longer than 5 

frames (i.e., 96 msec) are used (in order to get reliable slope estimates). Since glottal spectral 

slopes for vowel sections are almost all negative, the resulting feature histogram shows an 

envelope that is close to a Gamma distribution. In order to fit Gamma distribution to the feature 

histogram (shown in Eq. 19 and Eq. 20), only the absolute value of each spectral slope was 

considered (sample Gamma distribution for loud speech is shown in Fig. 7D. The ROC curves 

for the Bayesian hypothesis-testing method are shown in Fig. 8, and open-set test results for both 

Bayesian hypothesis-testing method and distance measure approach are summarized in Table 6. 

Table 6: Error Rate (percentage) of Open-set Stress Detection Test Using Glottal Spectral Slope as the 
Feature 

~~ 

The open-set test results from the Bayesian hypothesis-testing method show that spectral slope is 

more suitable for detecting angry speech than for detection of loud or Lombard effect speech 

from neutral. In spite of this, it still does not produce a reasonable levelof accuracy for 

classifying angry versus neutral speech. One possible reason for this result is that a more direct 

glottal source estimation method inight be needed, since the results presented in (Hansen, 1998b) 

seem to suggest that glottal spectral slope should be more successfil. The distance measure 

approach shows a similar level of performance as that obtained using the Bayesian hypothesis-

testing method. 
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4.2.5 Vocal Tract Spectrum 

In the evaluation of vocal tract spectral structure, first and second formant location was used. 

Since it was of interest to reduce vowel phoneme dependent traits (i.e.,the absolute vowel 

formant location), formant locatioii measurements were made with respect to the deviation from 

the expected average value. Therefore, using the expected average formant locations obtained 

from (Deller, Hansen, and Proakis, 1999; page 125), we subtract off the expected formant 

location knowing the particular vowel data under test (single and uppercase ARPABET labels 

are used for phonemes from Deller, Hansen, and Proakis, 1993; page 118). Using this 

conversion, formant location deviations of all vowels can be collected into a histogram and were 

shown to fit well to a Gaussian PDF (shown in Fig. 7e,f for first and second formants). Fig. Se,f 

shows ROC curves for the Bayesian hypothesis-testing method for different vector lengths. The 

open-set test results are summarized in Table 7. A comparison of ROCs and distance measure 

performance, we conclude that first and second individual formant location are not suitable for 

stress detection. 

Table 7: Error Rate (percentage) of Open-set Stress Detection Test Using First and Second Formant Location 
as the Features 
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(a.) DURATIONDISTRIBUTION (b.) INTENSITY DISTRIBUTION 
,.IO" 


. . (c.)  PITCHDISTRIBUTION (d.) GLOTTALSPECTRALSLOPE DISTRIBUTION 

(e.) F1 LOCATIONDISTRIBUTION (f.) FZLOCATION DISTRIBUTION 
,*. ,a4 ,,I Io-

I 1 

Gaussian and Gamma p d b  used to approximate the feature distkbution of vowels under 
loud speaking style. (a.) duration: T(a,0)  with (a= 4.4402,p = 45.6920); 
(b.) intensity: N(p,u21X 2 0)with ( p  = 9.99 x 103,u= 1.16x lo7); 
(c.) pitch: N(p,u'l.Y 2 0) with (1= 192 Hz,u2= 2094);
(d.) glottal spectral slope: r(a,P)with (a= 4.2329,4= 3.6612); 
(e.) fist formant location: N ( p , o Z )with ( p  = 73.28,~= 1.32 x 103); 
(1.) second formant location: N ( p , o ' )  with (p = -39.90,~= 6.89 x IO'). 

Figure 7: Gaussian and Gamma pdfs 
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ROC (b.) INTENSITYROC(a.)DURATION 

(c.)  PITCHROC 

(e.) F1 LOCATIONROC 

ROC detection curves for “loud” versus neutral speech (vowels) uaing input vector 
lengths of ( l ,S, lO) represented as (solid line *:. dashed line e. dotted line A) for: 
(a.) duration: EER(*) = 38.32%;EER(o) = 50.77%; EER(A) = 33.33% 
(b.) intensity: EER(*) = 32.74%; EER(0) = 23.08%; EER(A) = 20.51% 
(E.) pitch: EER(’) = 11.47%; EERIo) = 9.86%: EERfA) = 6 A O %-
(d.) glottal spectral slope: EER(*) = 40.51%; EER(ojG 32.22%; EER(A) = 54.48% 
(e.) first formant location: EER(*) = 45.67%; EER(o) = 45.515%; EER(A) = 43.07% 
(f.) second formant location: EER(*) = 46.94%; EER(a) = 46.32%; EER(A) = 47.4Q% 

Figure 8: ROC detection curves 
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4 . 2 . 6  Discussion of Linear Speech Features 


Based on Tables 3, 4, 5 ,  6, and 7, the following observations can be made: (1) that pitch is the 


best feature for stress classification among the five features considered, (2) error rates generally 


decrease as feature vector length increases, (3) performance differences exist between different 


stress styles, and (4) mean vowel formant locations are not suitable for stress classification. The 


results in this section have therefore established stress classification performance using linear 


speech production based features with two types of optimum detection methods. 


4.3 Stress Classification Using Nonlinear Speech Features 

In this section, recently proposed approaches to stress classification that employ Teager Energy 


Operator (TEO) based processing are considered. Three were proposed in the study by Zhou, 


Hansen, and Kaiser (1998a), and a fourth was discussed in Zhou, Hansen, and Kaiser (1998b). 


Here, we briefly consider the basic principles of the TEO, and one nonlinear feature for stress 


classification (TEO-CB-Auto-Env). This is followed by evaluations using stressed speech data 


from SUSAS for classification. Finally, we consider a comparison of three features for stress 


assessment in speech using actually emergency data provided by NATO IST/TG-01. 


4.3.1 Teager Energy Operator 


According to studies by Teager (1980, 1983), the assumption that airflow propagates as a plane 


wave in the vocal tract may not hold, since the flow is actually separated and concomitant 


vortices are distributed throughout the vocal tract. Based on the theory of the oscillation pattern 


of a simple spring--mass system, Teager developed an energy operator to measure the energy for 


simple sinusoids which has been suggested as being a useful element for speech. The simple and 


elegant form of thc operator was introduced by Kaiser (1990, 1993) as, 
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where v[.]is the Teager Energy Operator (TEO), and ~ ( t )is a single-frequency component of 

the continuous speech signal. Kaiser (1990, 1993) derived the operator for discrete-time signals 

from its continuous form t,vc b(t)],as, 

where &)is the sampled speech signal. 

The TEO is typically applied to a bandpass filtered speech signal, since its intent is to reflect the 

energy of the nonlinear energy flow within the vocal tract for a single resonant frequency. Under 

this condition, the resulting TEO profile can be used to decompose a speech signal into its AM 

and FM components within a certain frequency band via, 

where ~ ( n )x ( n ) - x ( n  -1) t,v[.] is the TEO operator as shown in Eq. 31, f(n)is the FM component= 

at sample n ,and a(.) is the AM component at sample n . On the basis of this work, Maragos, 

Kaiser, and Quatieri (1993a,b) proposed a nonlinear model which represents the speech signal 

4)
as, 

(34) 
Ill=] 

where 


(35) 


is a combined AM and FM structure representing a speech resonance at the mth formant with a 

center frequency F,, = f,,,. In this relation, a,,,(t)is the time-varying amplitude, and qm(r)isthe 

frequency modulating signal at the 177th formant. 
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Although the TEO is formulated for single-frequency signals or signals with a single resonant 

frequency, previous studies have shown that the TEO energy of a multi-frequency signal is not 

only different from that of single-frequency signal but also reflects interactions between different 

frequency components (Zhou, Hansen, and Kaiser 1998a,b). This characteristic extends the use 

of TEO to speech signals filtered with wide bandwidth band-pass filters (BPF). In the next 

section, we consider one TEO based features for stress classification. 

4.3.2 TEO-CB-Auto-Env: Critical Band Based TEO Autocorrelation Envelope 

Empirically, the human auditory system is assumed to be a filtering process which partitions the 

entire audible frequency range into many critical bands (Yost, 1994). Based on this assumption, 

a nonlinear feature is proposed that employs a critical band based filterbank to filter the speech 

signal followed by TEO processing (see Fig. 9) Each filter in the filterbank is a Gabor bandpass 

filter, with the effective RMS bandwidth being the corresponding critical band. This feature is 

an extension to previous TEO based features which have been proposed (Zhou, Hansen, and 

Kaiser 1998a), and preliminary classification results have also been reported (Zhou, Hansen, and 

Kaiser 1998b). Here we consider a comparison with other features for classification, and extend 

the basic ideas for the problem of stress assessment. 

Figure 9: TEO-CB-Auto-Env Feature Extraction 

To extract the TEO-CB-Auto-Env feature, each TEO profile of a Gabor BPF output is segmented 

into 200-sample (25 msec) frames with 100-sample (12.5 msec) overlap between adjacent 

frames. Next, M normalized TEO autocorrelation envelope area parameters are extracted for 

each time frame (Le., one for each critical band), where M is the total number of critical bands. 

This is the TEO-CB-Auto-Env feature vector per frame. Fig. 9 shows the entire feature 
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extraction procedure. Since each critical band possesses a much narrower bandwidth than the 1 


lcHz bandwidth used for BPFs in the "30-Auto-Env feature (discussed in Zhou, Hansen, and 


Kaiser 1998a), post Gabor bandpass filtering centered at median FO is not needed in TEO-CB-


Auto-Env extraction. This makes the new feature independent of the accuracy of median FO 


estimation. 


In practice, all TEO profiles are segmented into many frames and all autocorrelation functions 


are normalized. As a result, the constant autocorrelation function is represented as a decaying 


straight line from (OJ) to (N,O), where N is the frame length. Those variations caused by harmonic 


distribution as well as by modulations from stress are expected to be reflected by the change in 


the TEO autocorrelation envelopes. 


4.4 TEO Based Stress Detection Evaluations 


Evaluations were also conducted using the SUSAS,Speech Under Simulated and Actual Stress 


database (see Hansen, 1998, for a discussion). In experiments discussed here, angry, loud and 


Lombard effect styles were used from SUSAS for simulated stress (speakers were requested to 


speak in that style; 85 dB SPL pink noise played through headphones was used to simulate the 


Lombard effect). Data for SUSAS actual stress was selected from the subject motion-fear 


domain. In the actual domain, a series of controlled speech data collection experiments were 


performed with speakers riding an amusement park roller coaster. 


Since the TEO is more applicable for the voiced sound than for the unvoiced sound, only voiced 


sections of all word utterances were used for the evaluation. A baseline 5-state HMM-based 


stress classifier with continuous Gaussian mixture distributions was employed for the 


evaluations. For the purposes of comparison, a frame based pitch and MFCC features (Davis 


and Mermelstein, 1980) were used. 
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STRESS CLASSIFICATION RESULTS 
SIMULATED DOMAIN ACTUAL DOMAIN 
0 NEUTRAL 0 NEUTRAL 
0 ANGRY PJ ACTUAL 
e LOUD 
Q LOMBARD 

w 

1 I I 

Pitch MFCC TEO-CB-Auto-Env 
MEAN: m = 88.5% m = 89.5% m = 94.2% 
STD : u = 7.22 u = 5.73 u = 3.97 

Figure 10: Pairwise Stress Classification Results (Mean and standard deviation of overall neutravstress 
classification rates are shown; Different speaker groups were used for simulated and actual stress conditions) 

The evaluation results are shown in Fig. 10. In general, the TEO based feature was effective in 

classifying stressed speech from neutral for both simulated and actual stress situations. We 

should expect that the performance for the neutral versus actual stress domain to be better than 

simulated domain (angry, loud, Lombard effect), since the speakers clearly demonstrated 

extreme levels of stress for this data, The TEO-CB-Auto-Env feature with its fine frequency 

band partitions, provides the most effective and consistent level of stress classification 

performance compared with MFCC and pitch information. 

The evaluations in this section have shown that the proposed nonlinear based TEO-CB-Auto-Env 

feature is effective in the classification of speech under stress in both simulated and actual stress 

settings. This assumes that the goal is to detect the presence of stress. In some voice 
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communication settings, it is also necessary to assess the level of stress in a speaker's voice. The 

next section considers both linear and nonlinear based features for the task of stress assessment 

using actual emergency military voice communications between aircraft pilots from the SUSC-0 

stress database. 
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5 Stress Assessment 

In many commercial, law enforcement, and military applications, it is necessary to assess 

whether or not, as well as the degree to which, a speaker is under stress. To evaluate the 

techniques discussed and their ability to detect real stress, the SUSC-0 database containing 

speech of pilots under stress was processed (in a later section, we present an equivalent 

evaluation of speech data from the Mt. Carmel law enforcement encounter). The SUSC-0 

database is from NATO IST-TGO1 ,which consists of actual aircraft pilot communications under 

emergency situations'. Specifically, the Mayday2 domain in SUSC-0 was used, which contains 

speech data between a pilot and controller collected from the initial ground aircraft system 

check, through preliminary discovery of engine emergency, until safe resolution of the 

emergency. The different stress degrees experienced by the pilot are reflected by his speech in 

Mayday2. Twelve (12) sentences from the SUSC-0 database were extracted to represent 

different speaking styles for the assessment evaluation. Table 11 shows the 12 sentences from 

SUSC-0, where No. 1 represents ground systems check; in sentences 2-7 the pilot understands 

there is a problem and is working through a series a checks to determine the cause and to attempt 

to remedy the cause; sentence 7-11 the pilot realizes now that he is in an extreme emergency and 

stands a real possibility of not being able to land his aircraft; finally in No. 12 he has landed his 

aircraft and expresses relief. 

A baseline HMM-based stress assessor with continuous Gaussian mixture distributions was used 

for the evaluation. Two reference HMM models, one representing neutral speech and the other 

representing stressed speech, were trained. All voiced segments of the word "help" under neutral 

conditions in SUSAS database were used to train the neutral HMM reference model. For the 

stressed HMM refercnce model, two different data sets were trained, one from a combination of 

simulated angry, loud, and Lombard stress conditions, and one from that actual stress roller 

coaster and free fall ride data, respectively. If a speech feature can assess the degree of stress 

regardless of text, the log likelihood ratio of the unknown speech generated by the stressed 

'Sample audio files for stressed speech databases used in this study, SUSAS and SUSC-0, are available from the 
NATO IST/TG-0 1 Web page on Speech Under Stress: h~ : / / c s lu . co lo rado .edu / r s~~ST~SS/ in fo .h~ l  
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HMM model versus the neutral HMM model should be able to indicate whether it is more likely 

under stress or neutral. Since the TEO-based autocorrelation envelope feature (TEO-CB-Auto-

Env), MFCCs, and frame-based pitch information were shown to be very effective for stress 

classification, they were used to assess the stress for SUSC-0 data. Since both the TEO-based 

feature and pitch information are only useful for voiced speech, the assessment is based on the 

extracted voiced portions from each utterance. To consider the variations within each utterance, 

4 voiced portions per utterance (shown in Table 11) are extracted for the assessment. Note that 

the neutral and stress HMM classification models were trained from the /eh/ phoneme in help, 

and that almost all tested voiced sections consisted of different phonemes. 

Table 8: Sentences from SUSC-0 used for Stress Assessment Evaluation. Note that bold uppercase characters 
represent voiced sections which were used for overall stress assessment of that sentence. 

11 I I'm h o t  I nEEd the cAbLe ... II I d  l i y l  ley/ lax-ll
_I_ mAn I thOUGlJt I wAs gone , lael l a d  I d  la0112 

The assessment results are shown in Fig. 14. Here, a single score is obtained by finding an 

average output score across the four extracted voiced sections per sentence. Generally speaking, 

the recordings begin in a neutral relaxed setting (sentences 1-2), then move into concern while 

pilot begins to determine the cause of the problem (sentences 3-7). Finally, the pilot determines 

that the emergency is serious and must land the aircraft without power (sentences 8-11). 

Sentence number 12 indicates his relief after a safe landing. 

Both figures ((a) and (b) in Fig. 14) show that the general assessment score trend is similar 

regardless of which anchor stress HMM reference model is used (note that a negative likelihood 
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difference score means that the 'neutral' HMM model is more likely, and that a positive score 

means the 'stressed' HMM model is more likely). The results do show the stress HMM reference 

model trained from actual SUSAS stressed speech has larger fluctuations among assessment 

scores. This may be because that model represents an extreme case of stress. It is noted that 

SUSC-0 recordings can at times have high levels of background noise, so it is possible that stress 

assessment could be affected by this distortion'. The stress level profile versus increasing 

sentence location showed liinitcd variation for MFCC features. This occurs, because while there 

are significant changes in spectral structure on a per phoneme basis as demonstrated in (Hansen, 

1998b), the differences in phoneme content for the voiced sections analyzed are more dissimilar 

to either neutral or stressed MFCC trained HMM model (this explains why the difference in log-

likelihood scores are close to zero, since both models give similar scores). For pitch 

(fundamental frequcncy) versus time, we see that the neutral model is selected for sentence 

counts 1-7, with a sharp change towards the stressed HMM model for 8-12. We note that for 

sentence example 9, there were irregular pitch values resulting from the pitch estimation scheme 

which were not corrected (ix., we wanted to compare performance of features without user 

intervention). Finally, the TEO-CB-Auto-Env feature produced more meaningful scores for the 

case of a neutral versus Actual stress trained reference HMM model as opposed to a simulated 

stress trained reference HMM. Again, the neutral model received very high scores (large 

negative likelihood difference score) for sentence entries 1-7. Sentence entries 8-12 produced 

scores which were more associated with the stressed model in both test cases. Since the neutral 

reference HMM model was the same in both test cases, the difference in scores reflect 

differences in the strcssed reference model. The results here demonstrate that the proposed 

feature can be used for the purposes of stress assessment, though it is suggested that the stressed 

speech reference model should be traincd on data which reflects the desired type of stress to be 

assessed. Also, future studies could consider the influence of other distortions for assessment, 

including channel/microphone differences and acoustic background interference. 

In this study, we choose not to perform speech enhancement due to the potential of introducing spectral based 
processing artifacts (Hansen 1999). 
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A second evaluation for stress assessment will be presented in Section 7, which specifically 

considers the law enforcement voice recordings from the shoot-out at Mount Cannel. 
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Figure 11: Assessment results for pilot’s speech from Mayday2 domain of SUSC-0 database (Log likelihood 
ratio is shown along Y-axis while sentence number is shown along X-axis): (a) Neutral vs Simulated stress 
(Loud, Angry and Lombard) HMM reference models; (b) Neutral vs Actual stress HMM reference models 
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6 ConventionaI/CommerciaI Voice Stress Analyzer Features 

In this section, we consider an evaluation of several traditional features which have been used in 

the development of commercial voice stress analyzers. The results here are presented in the form 

of a series of experiments. The three features considered include: (i) normalized pitch frequency, 

(ii) periodicity, and (iii) pitch jitter. The evaluations were conducted using three stressed 

speaking styles extracted from the SUSAS speech database. The stressed speech conditions 

include: Angry, Loud, and Lombard effect. 

6.1 Features: Normalized Pitch, Periodicity, Jitter 

The scaled pitch measure is computed using the autocorrelation method. For the ith frame of 

windowed speech, si (n),the maximum valued autocorrelation lag, m,, ( i )  is computed using the 

function, 

The pitch frequency of the signal is obtained by dividing the sample rate, Fs,,,,p,e, by the 

maximum valued autocorrelation lag, 

Finally, scaled pitch is obtained by first applying the constraint that ~ O H Z5 ~ , ( i ) <F,,"', and 

dividing by a maximum allowable pitch frequency (FT" = 400Hz) , 

Scaled pitch values range from 0 to 1 with values near 1 typically observed for speech under 

extreme stress. 
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Periodicity represents the degree of voicing state of the speech waveform. It is simply computed 

as the ratio of the energy of the /17,,,,, autocorrelation lag: 

Jitter is related to the frame-to-frame variation in pitch period and essentially measures small 

fluctuations in glottal cycle lengths. Lct v(i) represent the absolute difference between the pitch 

period at frame i and frame i-1: 

Jitter, &)is computed as follows 

5[V(n)-V(n+l)]
J ( i )= 

f [P(i- I )+ P(i). P(i+ l)] 

6.2 CVSA: Computer Voice Stress Analyzer 


The operation of the computer voice stress analyzer (CVSA) is based on the notion that muscles 


and limbs of the human body exhibit a natural tremor rate ranging between 8 to 12 Hz. There are 


several underlying assumptions made about speech production which leads to the formulation of 


the device. First, since vocal chords are primarily muscular tissue, it is assumed that the voice 


fundamental frequencies are modulated by an 8 to 12 Hz "microtremor". Second, increased 


levels of arousal or stress contribute to additional tension in the vocal chords. This results in a 


reduction of the natural tremor amplitude. Finally, it is assumed that l'microtremorsll are not 


audible to the listener, but measurable using computer aided algorithms. 


Various devices have been constructed to measure microtremors in the human voice. The analog 


device known as the Psychological Stress Evaluator (PSE) was studied by VanDercar, et. a1 


(1980). The general operation of the device consists of four basic modes. Each operation mode 


(known as Mode 1 to Mode 4) controls the degree to which the signal is filtered. The filtering in 


all four modes was accomplished using a combination resistor and capacitor circuit to produce 
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varying degrees of low-pass response. In Mode 3, for example, the PSE circuitry consists of a 

4.6 pF capacitor in parallel with a 30Kn resistor. 

After reviewing the literature for the CVSA as described in (Cestaro, 1995), we implemented a 

Matlab version of the CVSA. The Matlab software is very simple in that it implements the 

digital filter described by Mode 3 operation of the PSE device. The software assumes input 

speech sampled at 8 kHz and outputs a time-domain waveform shape analogous to the pen-

drawings illustrated in (VanDercar, et. al, 1980). 

During processing, the speech signal is first passed through an 8 times oversampling to simulate 

the one-eighth tape play speed of Mode 3. After oversampling, the waveform is passed through 

a low-pass digital filter with frequency response derived from the resistorhapacitor description 

of the analog device. The Matlab code listing is shown below: 

function z = cvsa(x) 

samp = 8000; 

pass = 12; 

stop = 15; 


x = resample(x,S,1); 

x(find(x<=O)) = zeros(length(find(x<=O)), 1); 

y =x ;  

[n,Wn,beta,typ] = kaiserord([pass stop],[l 01, [0.01 0.11, 8000 ); 

b = firl(n, Wn, typ, l<aiser(n+I,beta), 'noscale'); 

z = filter(b,1,y); 


PW z ) ;  
The CVSA output is analyzed visually. Four aspects of the output waveform are assumed to 

contribute to reveal the degree of vocal stress. These include: amplitude, leading edge, cyclic 

rate change, and "blocking". A description of each term and it's visual manifestation can be 

found in (VanDercar, et al., 1980). The most important indicator of stress or deception in speech 

is thought to be "blocking". Blocking occurs when straight parallel lines are seen in the output to 

form an envelope over the CVSA signal. Evaluation of the implemented CVSA scheme is 

presented in Section 7. 
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6.3 Evaluations: Normalized Pitch, Periodicity, Jitter 


The speech data consisted of simulated stress from the SUSAS speech database. Specifically, 56 


isolated words from each of 9 speakers were used to estimate GMM (Gaussian Mixture hidden 


Markov Model) based models for each stressed condition. The remaining 14 words were used 


for open test evaluation. Due to limited data, a round-robin trainhest paradigm was used. 


During processing, each word token was first processed using an automatic end-point detection 


algorithm. Next, the (3) features were extracted every 10 msec from 30 msec windowed portions 


of data. 


The evaluation consisted of a pair-wise stress classification task. Data submitted for test was 


assumed to be either neutral data or one of three stressed speaking styles. The classifier must 


therefore decide if the data is either neutral or stressed. 


The evaluation consisted of subinittiiig the test set data (different from training data) to each 


GMM (normal, angry, loud, Lombard). The output scores for each frame were used to compute 


a frame-based log likelihood ratio. The average of the frame-based measures were computed 


over a single isolated word and the output compared to a decision threshold. Values greater than 


the threshold are considered to be from normal speaking conditions while values less than the 


threshold constituted stressed speaking style. The results summarized below are presented in the 


form of a series of experiments which serve to determine if the GMM classifier structure, or the 


input speech data type, influence stress classification performance. 


Exueriment I :  In order to determine the influence of the number of mixtures in the GMM 


classifier, we ran an experiment with three different mixture sizes. All three features (Le., 


normalized pitch frequency, periodicity, and pitch jitter) were used as a per frame vector. The 


results are shown in Table 9. In general, as the number of Gaussian mixtures is increased, the 


ability of the classifier to more closely reprcscnt the changing feature structure should increase. 


As the results in Table 91a show, there is only a slight increase in performance as the number of 


mixtures increase. Since excitation features change more significantly for angry and loud 


speech, we would expect their performance to be much better than for Lombard speech. While 
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this is true, the difference is not as large as one might expect if we simply considered mean pitch 

changes. 

Normal vs. Painvise GMM-Based Stress Classification Results 
(la) 

AW3-Y 
Loud 

Lombard 
Pa)  

Angry 
Loud 

Lombard 

32 mixtures 64 mixtures 128 mixtures 
72.1% 70.9% 7 1.4% 
69.2% 72.2% 75.8% 
62.7% 59.6% 64.4% 

32 mixtures 64 mixtures 128 mixtures 
75.0% 75.0% 73.9% 
77.6% 71.7% 71.2% 
63.7% 63.3% 59.6% 

Experiment 2: In this experiment, the conditions are the same as that for Experiment 1, with the 

exception that only voiced speech sections were used in the 3-feature vector per fiame. To 

determine which frames were voiced, we extracted all framew with a periodicity measure greater 

than 0.30. The results in Table 9 (2a) are for the case when the pitch mean is removed, and 9 

(2b) are for the case when pitch mean is not removed. In cases where pitch mean was previously 

shown to change significantly (Le., loud and angry), the stress classification results were better. 

The results are about the same for Lombard speech. 

Experiment 3: Several experiments were also performed were we augment the three excitation 

features with the first and second-order derivatives. Results for Table 9 (3a) are for the case for 

a combined 6 feature vector (3 static, 3 first-order derivatives) in the stress classification. In this 

scenario, stress classification performance improves for Lombard speech, but little real 
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improvement is observed for angry or loud. If the second-order derivatives are included (now a 

9 feature vector per frame; results in Table 9 (3b), there is a measurable level of improvement. 

This was especially true for the 64 mixture case, and less so for the 128 mixture case. Again, 

including static, along with first and second order derivatives generally provides better resolving 

power for the classifier. 

Experiment 4:  Having establishcd a baseline system, using 64 mixtures, we set out to explore 

several issues involved in the training process. One issue of interest is that when different 

classes of features are used, quite often their variances will encompass a wide range. To reduce 

these effects, we set a variance threshold during the training process (two experiments were 

performed; one with a variance floor of 0.001 instead of the standard 0.01 (Table 10 (4a)); and 

one with a variance floor of0.0001 (Table 10 (4b)). Comparing results from Table 10 (4a) with 

Table 9 (3b) (64 mixture column), we see that reducing the variance floor increases classification 

performance, with good gains for loud and Lombard stress styles. However, dropping the 

variance threshold too low, results in a slight loss in performance. 

Exueriment 5: In addition to adjustments in the feature variance floor during training, the number 

of iterations, given the training corpus, can also effect classification performance. Too many 

iterations, will result in a model that is too specialized for the training set (especially true if the 

training token size is small). Too few iterations will produce a classifier which is to general. 

Again, this issue will be based on the amount and speaker set range in the available training data. 

In this experiment, we kept the same configuration as that for Experiment 4a, but considered 

increasing the number of iterations of the traditional Baum-Welch hidden Markov model training 

algorithm from 10 to 20. The results are summarized in Table 10 (5).  Again, the additional 

training iterations, coupled with the adjustment in the feature variance floor, produces another 

slight increase in classification performance. We also tried an experiment where we used this 

set-up with frames which had a higher degree of voicing to see if transitional frames between 

voiced and unvoiced speech had much influence in the classifier performance. The results were 

almost the same, thus suggesting that transitional frames do not significantly impact performance 

for these stress conditions. 
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Table 10: Experiments using (i) normalizcd pitch frcqucncy, (ii) periodicity, and (iii) pitch jitter as a three 
feature set for a GMM (Gaussian mixture model) stress classifier. Here, test cases explore differences in the 

minimum feature variance during training, the number of training iterations, and augmenting excitation 
based features with vocalt tract spectral features (MFCCs). The last experiment considers neutral versus 

grouped stress conditions. 

Normal vs. 

(4a) variance floor:O.OOl 


(4b) variance floor:O.OOOl 

(5) Training: 20 iterations 


(6a) with MFCCs 

(6b)with MFCC, deltas, delta-deltas 

(7)Neutral vs. grouped Stress 


Pairwise GMM-Based Stress ClassificationResults 
Angry Loud Lombard 

86.4% 90.5% 82.0% 
83.9% 88.9% 80.5% 
87.4% 92.9% 81.O% 
94.6% 95.9% 87.5% 
92.6% 95.6% 86.9% 
93.1% 96.2% 87.4% 

Experiment 6: In the experiinents thus far, we have considered different forms of features which 

represent excitation characteristics. However, it has been shown that stress also effects spectral 

structure as reflected in the vocal tract structure. In this experiment, we augment the three 

excitation features with traditional spectral based MFCC parameters, which generally reflect 

vocal tract structure. To help reducc the effect of glottal source information on the MFCC 

parameters, we performed a pre-emphasis (coefficient of 0.97). A 20 set filterbank was used to 

obtain 8 MFCC spectral features per speech data frame. The results in Table 10 (6) showed a 

marked improvement for all three stress conditions. We also considered the case where first and 

second order derivatives were included. In order to reduce the impact of the fine spectral 

structure, we reduced the number of static MFCC parameters from 8 to 4,and included 4 delta-

MFCC and 4-delta-delta MFCC parameters (Le., first and second order derivatives). The delta 

features reflect the time rate of change of the static spectral structure. While including delta and 

delta-delta MFCC parameters have been shown to improve recognition of speech under stress, 

there was either no change or a slight loss in stress classification performance when included. 

Other experiments were also pcrformed where we increased the variance of the excitation 

features by a scale constant, so that they would have more influence over spectral features. The 

results were within 0.1% of the values obtained in Table 10 (6a) and 10 (6b). 

We point out herc, that the use of spectral structure assumes that we have some examples of the 

speaker(s) in both neutral and stressed speaking conditions. Mean normalized excitation features 
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generally are less speaker dependent, and therefore more appropriate for use when training 

speaker data is obtained from different speakers in similar test conditions. 

Experiment 7: In this last experiment, we consider a test condition originally proposed by 

Womack and Hansen ( I  996), where instead of a binary stress classification decision, we assume 

that the speech is either neutral or stressed, and determine an overall detection rate. This 

essentially groups the thrcc stress conditions into one class (we use all three stressed GMM 

models during the test, and if any one is selected over the neutral model, the input is classified as 

stressed). This decision process does not record an error if an incorrect stressed model is 

selected (i.e., if the input token is under angry stressed condition, and the loud stressed model is 

selected, then the input was correctly identified as being under stress). This scenario was chosen, 

because in many situations spealters are not producing speech under a single style, but in fact 

typically display a mixture of conditions. The results, Table 10 (7),are nearly the same as those 

for the case when MFCCs are included. 

In summary, the best Gaussian mixture model based classifier for these stress conditions are as 

follows: excitation features include normalized pitch, periodicity, and jitter with their first and 

second order derivatives, use 20 itcratioiis of the training algorithm, reduce the feature training 

variance threshold to 0.001, use 64 mixtures per model, and include at least some form of vocal 

tract spectral structure (MFCCs) if data is available. 
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7 Stress Analysis: Mt. Carmel Data 

In this section, we consider analysis and evaluation of the actual stressed speech from Mt.-

Carmel. In Section 7.1 example feature plots are compared between the excitation features 

discussed in Section 6.1 for sample SUSAS and Carmel speech data. Section7.2 considers stress 

assessment using pitch, MFCCs, and the nonlinear TEO based feature for the Mt. Carmel data. 

The Carmel data represents audio recordings between individuals during a law enforcement 

encounter with armed extremists. 

7.1 Example Excitation Feature Plots 

In the previous section, we discussed a number of experiments to determine the usefblness of 

traditional excitation features for stress classification. Here, we use the same Gaussian mixture 

model classifier trained using the Maximum Likelihood approach. The evaluation here, 

however, is focused on a comparison of these features with CVSA for both Mt. Carmel law 

enforcement data and SUSAS speech under stress data. Several frames of processed speech 

output for (1) Normalized pitch, (2) Jitter, and (3) CVSA output from Matlab are considered. 

While it is difficult to make certain judgements from only a few examples of stressed and neutral 

speech, we use a comparison with examples from SUSAS which contained much more test data. 

The first plot (Fig. 12) shows results for telephone speech collected from a 911 call made during 

the FBI raid on Mt. Carmel. Here, we see that the high-stress condition results in normalized 

pitch values near 1 throughout the beginning and end of the audio fragment. There is also an 

increase in the jitter output near the middle of the segment. For the CVSA output, we see that 

the variations in the output waveform are reduced for the case of the high-stressed speech, which 

we would expect for the case when microtremors are absent due to the presence of stress. This 

would also, however, contradict expectations of "blocking" which should be readily visible for 

speech under stress. 

In order to compare these results with earlier evaluations, we repeated these evaluations with 

speech data from SUSAS. Data from the neutral word llfix'l and the same word produced under 

actual stress (roller coaster environment) were processed. Fig. 13 presents feature profiles for 
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the three features (normalized pitch, jitter, CVSA). Because the classifiers considered are 

statistical in nature, it is difficult to visually see significant differences between the normalized 

pitch and jitter features. The CVSA outputs show significant differences between the neutral and 

stressed conditions. However, we point out that the stressed speech signal lacks the "blocking" 

output that is expected from the CVSA in stressed conditions. We might point out that speech 

data from the actual portion of SUSAS was from roller coaster rides, which potentially could 

include low frequency physical vibration. 

65 

Points of view or opinions stated in this report are those of the authors and do not 
necessarily represent the official positions or policies of the United States Department of 
Justice. 



MOUNT CARMEL SPEECHDATASTRESSED 
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Figure 12: Feature analysis results for speech from Mt Carmel Recording. Sentence S1 and S7 were selected. 
Three features include (i) normalized pitch, (i i )  jitter, and (iii) CVSA response. 
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SUSAS STRESSED DATASPEECH 
[ACTUALDOMAIN] 

NeUKIal: "fix" Actual (Roller Coaster): "fir" 
NORMALIZEDPITCH 

-
1 - 1 

0.8 , 
0.8. 

0 .8 .  0.6 

0.4.  0.4 . 

CVSA 
10000, 1 12000, 

10000 

6000 

4000 
2000 2000 

0 

-20001 -2oooL 
1 2 3 4 0 0.5 1 t.5 2 2.5 

SAMPLE( i io' I SAMPLE ( x io' 

Figure 13: Feature analysis results for speech from Mt Carmel Recording. Sentence S1 and S7 were selected. 
Three features include (i) normalized pitch, (ii) jitter, and (iii) CVSA response. 

7.2 Assessment Evaluation for Mt. Carmel Data 

In this section, a stress assessment evaluation similar to that presented in Section 5 is considered, 

using speech data recorded during Mt. Carmel law enforcement encounter. The audio recordings 

obtained consisted of telephone conversations between an extremist individual (sect leader) 

within the compound who called 911 emergency services from the beginning of the shooting. 
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The speech we assessed was that of the sect leader's voice during his dialogue with the 911 

service. A total of 20 sentences were segmented from the talker's speech and used for and 

experiment in stress assessment. In that specific situation, almost all 20 sentences were spoken 

under stress. However, the degree of stress varies from time to time. For example, the sect 

leader explained the situation in sentcnces 1, 9, and 10 in relatively neutral conditions; while 

sentences 7 and 8 were spoken during the actual shooting, with gunshots present as background 

noise. It is clear from these examples that the speaker was under an extreme level of stress. 

Similar to the experiment using SUSC-0 data, four voiced portions per utterance were extracted 

for assessment (text transcriptions and extracted voiced sections are summarized in Table1 1. 

13 ThEY ARE,[ thEY} ARE} 1. (two different speakers) 
14 They hAven't bEEN}, ...,thEY hAven't been (different speaker breaks in) 
15 ThAl's tliEM, IhEY IiAvcii't been .[??I.. shooting.[???] (noise breaks in during speech) 

16 Thcy're, What do you thINk they doing ALL this flring on us right nOW? 
17 lEAst thREE (break into two portions) hIts 
18 ONE (break into two) dEAd (break into two) 
19 I'M tALkING [??I (another speaker breaks in at the end) 
20 HOLd their flRE}. to IEAve the aroDertv and we'll tALk 

The assessment results are shown in Fig. 14. Instead of using the actual score difference for the 

y-axis as we did in Fig. 11, we used normalized HMM score difference. In essence, the HMM 
score differences are norrnalizcd for each feature, respectively, based on the corresponding 

range. This was performed because the range of HMM score differences for pitch was so large 
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that the change in score difference for the TEO-CB-Auto-Env feature and MFCC feature could 

not be observed clearly when all three werc plotted on the same figure. As we can see, the 

general assessment score trend is independent upon which anchor stress HMM reference model 

is used (Le., one trained using simulated stress data from SUSAS or actual stressed speech from 

SUSAS). Sentences assessed in this cxperiment have different levels and types of background 

noise, such as gunshots, etc. So the prospect exists that assessment results could be affected by 

background noise. Upon a careful listener evaluation of all 20 sentences, we found that pitch and 

the TEO-CB-Auto-Env feature reflected similar information regarding the degree of perceived 

speaker stress; while the MFCC feature was very inconsistent. We also note that the accuracy of 

stress assessment could be influenced by the type of recording condition. In some cases here, the 

speech sounds 'hollow' as if the microphone recording conditions changed (there are examples 

where the speaker is actually yelling and cases where his mouth could be some distance from the 

microphone). There are also many examples where the voiced portions are very short. In spite 

of these observations, it appears that relative to the first sentence, there is some degree of 

consistency for sentences which are more relaxed and those which are under higher degrees of 

stress. 
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Figure 14: Assessment results for speech from Mt Carmel Recording (Log likelihood ratio is shown along Y-
axis while sentence number is shown along X-axis): (a) Neutral vs Simulated stress (Loud, Angry and 

Lombard) HMM reference models; (b) Neutral vs Actual stress HMM reference models} 
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8 CONCLUSIONS: Issues for Stress Assessment and Classification 

The issue of stress classification is a problem which is becoming increasingly important for law 

enforcement and military in the field. Past methods for voice stress analysis have focused on 

what is believed to be microtremors in the muscles for voice production. While there is evidence 

which suggests that muscle control within the speech production system could, and most likely 

are, influenced by the presence of stress experienced by the speaker; there is still uncertainty to 

what degree and how consistent this change in speech muscle control could actually manifest 

itself into the form of "microtremors" during the speech production process. Clearly extensive 

research in the medical field has considered neurological based factors that effect human speech 

production (for example, the work done for Parkinson's speech (L.Ramig, in Kent 1992). 

In this report, we have considered previous studies on speech under stress, results from our own 

evaluations, experiments using features derived from commercial voice stress analyzers, and 

novel nonlinear based features recently formulated in the literature. All of these findings suggest 

that when a speaker is under stress, their voice characteristics change. Changes in pitch, glottal 

source factors, duration, intensity, and spectral structure from the vocal tract are all influenced in 

different ways by the presence of speaker stress. Our results also suggest that the features by 

which commercial voice stress analyzers are based upon, can at times reflect changes in the 

speech production system which occur when a speaker is under stress. However, as is the case 

with speaker control of pitch, a variety of factors could influence the presence or absence of the 

microtremors, which are claimed to exist in our muscle control during speech production. It is 

clearly unlikely that a single measure such as that based on the CVSA, could be universally 

successful in assessing stress (such as that which might be experienced during the act of 

deception). However, it is not inconceivable that under extreme levels of stress, that muscle 

control throughout the speaker will be affected, including muscles associated with speech 

production. The level and degree to which this change in muscle control imparts less/more 

fluctuations in the speech signal caiinot be conclusively determined, since even if these tremors 

exist, their influence will most certainly be speaker dependent. A similar argument has been 
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made in the medical community over non-invasive voice analysis for screening of subjects with 

vocal fold cancer (Hansen, Gavidia-Ceballos, and Kaiser, 1998). 

Many commercial voice stress analyzers are presently on the market. Some of these include: 

0 	 PSE: pyschological stress evaluator, developed by A. Bel1,Verimetrics (U.S. Patent by Bell 
and others, 1976). 

0 CVSA: Computerized voice stress analyzer, National Inst. Truth Ver., C. Humble. 
0 Lantern: Diogenes Group 
0 Truster: Makh-Shevet, Isreal company. 
0 Several low cost voice stress analyzer kits 

Although the details by which these methods operate are not clearly described in their literature, 

the claims of success are well documented in the company literature. Most, if not all, of these 

methods focus on some aspect of assessing the presence of microtremors which are expected to 

be present when a speaker is under neutralkalm speaking conditions. These microtremors are 

expected to be reduced when a speaker is under stress. The results from our study here cannot 

prove or disprove the commercial claims. However, our evaluations using various linear and 

nonlinear based excitation features suggest that various types of emotiodstress can be detected 

in some individuals. The reliability will depend on the available training data for the classifier, 

and we expect that stress classification performance should be more successful if there is a 

means of "training" the system for a given speaker in similar conditions. Some of the claims 

made by these manufacturers have no basis, or are so extreme that they go against basic speech 

science. The Truster web-page states that tlicir system will be able to determine deception even 

if the speaker is under different leveldtypes of emotion. Such a claim has no scientific merit, 

since it is not possible to cleanly separate the excitation signal into component dues to emotion 

and those due to deception. 

More recent algorithms for voice stress analysis have been proposed using digital speech 

processing techniques, somc of which suggest alternative excitation methods which offer the 

promise of better system integration within speechhpeaker recognition or voice equipment for 

communications scenarios. 
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While research and progress have been made in the areas of stress classification and assessment, 

a number of important research areas require further investigation. Here, we briefly consider 

four points. First, in order to perform stress classification or assessment, two anchor models are 

needed (one for neutral and one for stress). These models should be trained using speech 

obtained from the actual stressful environments in which we wish to assess operators (i.e., 

aircraft pilot recordings if pilots are to be assessed; subject interviews in law enforcement). The 

type of stress which is displayed in one setting (aircraft cockpit), may not reflect the same 

conditions experienced in another (law enforcement questioning session). Second, further 

research is needed to assess the consistency of stress assessmentklassification for a given 

speaker and for unseen speakers (ix., explore the impact of using other training data to assess 

new speakers). Commercial systems assume that the same feature will be effected by all 

speakers. There needs to be a way of determining if a stress classification algorithdsystem 

would prove to be useful, or if the speaker is not a viable candidate for assessment. Third, there 

is clearly a range of emotions and psychological factors which all contribute to speaker 'stress.' 

In emergency scenarios a pilot may experience a combination of fear, anxiety, fatigue, etc. at the 

same time. A suspect under questioning would also display natural stress even if he were not 

guilty. The ability to classify/assess this mixturc of speaker traits is important in determining the 

stress state of the speaker. Finally, there exists an unknown relationship between how computer 

based speech systems are able to classify stress and how humans perform stress classification. 

This operation is well documented in the field of speech quality assessment, where there exists 

scientifically recognized subjective tests, which are used to determine a degree of correlation 

with numerical objective measures. It would make sense to explore the field to determine if 

standardized tests exist or could be modified to subjectively determine stress state and level in 

speakers, and then apply either commercial systems or research based stress classification 

algorithms to determine their 'correlation' to correct stress detection. This issue is important in 

the collection of future databases so that better stress anchor models can be used with emerging 

speech technology. From the research conducted here, it is suggested that speakers often vary 

how they convey stress in their speech, and that several speech features may be needed to 
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capture the subtle differences in how speakers convey their stress state in different voice 

communications scenarios. 
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9 Appendix 

Software implementations of the features presented in this report will be supplied directly to the 

sponsor. This will include algorithms coded in Matlab and C of linear features, CVSA, and the 

TEO-CB-Auto-Env measure. 
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